Home  |   Archive  |   Online Submission  |   News & Events  |   Subscribe  |   APFA  |   Society  |   Contact Us  |   中文版
Search   
 
Journal

Ahead of print
Authors' Accepted
    Manuscripts
new!
Current Issue
Archive
Acknowledgments
Special Issues
Browse by Category

Manuscript Submission

Online Submission
Online Review
Instruction for Authors
Instruction for Reviewers
English Corner new!

About AJA

About AJA
Editorial Board
Contact Us
News

Resources & Services

Advertisement
Subscription
Email alert
Proceedings
Reprints

Download area

Copyright licence
EndNote style file
Manuscript word template
Guidance for AJA figures
    preparation (in English)

Guidance for AJA figures
    preparation (in Chinese)

Proof-reading for the
    authors

AJA Club (in English)
AJA Club (in Chinese)

 
Abstract

Volume 16, Issue 4 (July 2014) 16, 530–535; 10.4103/1008-682X.122877

Trading in your spindles for blebs: the amoeboid tumor cell phenotype in prostate cancer

Samantha Morley1, Martin H Hager2, Sara G Pollan3, Beatrice Knudsen3, Dolores Di Vizio1, Michael R Freeman4

1 Division of Cancer Biology and Therapeutics, Departments of Surgery, Medicine and Biomedical Sciences, and The Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA; Urological Diseases Research Center, Boston Children's Hospital and Department of Surgery, Harvard Medical School, Boston, MA, USA
2 Urological Diseases Research Center, Boston Children's Hospital; Department of Surgery, Harvard Medical School, Boston, MA, USA
3 Division of Cancer Biology and Therapeutics, Departments of Surgery, Medicine and Biomedical Sciences, and The Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
4 Division of Cancer Biology and Therapeutics, Departments of Surgery, Medicine and Biomedical Sciences, and The Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA; Urological Diseases Research Center, Boston Children's Hospital; Department of Surgery, Harvard Medical School, Boston, MA and Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, USA

Correspondence: Prof. MR Freeman (Michael.Freeman@cshs.org) or Prof. D Di Vizio (Dolores.Divizio@cshs.org)

2014/2/24

Abstract

Prostate cancer (PCa) remains a principal cause of mortality in developed countries. Because no clinical interventions overcome resistance to androgen ablation therapy, management of castration resistance and metastatic disease remains largely untreatable. Metastasis is a multistep process in which tumor cells lose cell-cell contacts, egress from the primary tumor, intravasate, survive shear stress within the vasculature and extravasate into tissues to colonize ectopic sites. Tumor cells reestablish migratory behaviors employed during nonneoplastic processes such as embryonic development, leukocyte trafficking and wound healing. While mesenchymal motility is an established paradigm of dissemination, an alternate, 'amoeboid' phenotype is increasingly appreciated as relevant to human cancer. Here we discuss characteristics and pathways underlying the phenotype, and highlight our findings that the cytoskeletal regulator DIAPH3 governs the mesenchymal-amoeboid transition. We also describe our identification of a new class of tumor-derived microvesicles, large oncosomes, produced by amoeboid cells and with potential clinical utility in prostate and other cancers.

Full Text | PDF | 中文摘要 |

 
Browse:  2377
 
Asian Journal of Andrology CN 31-1795/R ISSN 1008-682X  Copyright © 2023  Shanghai Materia Medica, Chinese Academy of Sciences.  All rights reserved.