Home  |   Archive  |   Online Submission  |   News & Events  |   Subscribe  |   APFA  |   Society  |   Contact Us  |   中文版
Search   
 
Journal

Ahead of print
Authors' Accepted
    Manuscripts
new!
Current Issue
Archive
Acknowledgments
Special Issues
Browse by Category

Manuscript Submission

Online Submission
Online Review
Instruction for Authors
Instruction for Reviewers
English Corner new!

About AJA

About AJA
Editorial Board
Contact Us
News

Resources & Services

Advertisement
Subscription
Email alert
Proceedings
Reprints

Download area

Copyright licence
EndNote style file
Manuscript word template
Guidance for AJA figures
    preparation (in English)

Guidance for AJA figures
    preparation (in Chinese)

Proof-reading for the
    authors

AJA Club (in English)
AJA Club (in Chinese)

 
Abstract

Volume 18, Issue 6 (November 2016) 18, 930–936; DOI:10.4103/1008-682X.163190

Obesity-induced sperm DNA methylation changes at satellite repeats are reprogrammed in rat offspring

Neil A Youngson, Virginie Lecomte, Christopher A Maloney, Preston Leung, Jia Liu, Luke B Hesson, Fabio Luciani, Lutz Krause, Margaret J Morris

1 Department of Pharmacology, School of Medical Sciences, UNSW Australia, Sydney, NSW 2052, Australia
2 Inflammation and Infection Research, School of Medical Sciences, UNSW Australia, Sydney, NSW 2052, Australia
3 Adult Cancer Program, Lowy Cancer Research Centre and Prince of Wales Clinical School, UNSW Australia, Sydney, NSW 2052, Australia
4 QIMR Berghofer Medical Research Institute, Herston, Brisbane; University of Queensland Diamantina Institute, Translational Research Institute, University of Queensland, 37 Kent Street Woolloongabba, Queensland 4102, Australia


Correspondence: Prof. MJ Morris (m.morris@unsw.edu.au)

Date of Submission 31-Mar-2015 Date of Decision 21-May-2015 Date of Acceptance 15-Jul-2015 Date of Web Publication 24-Nov-2015

Abstract

Abstract

There is now strong evidence that the paternal contribution to offspring phenotype at fertilisation is more than just DNA. However, the identity and mechanisms of this nongenetic inheritance are poorly understood. One of the more important questions in this research area is: do changes in sperm DNA methylation have phenotypic consequences for offspring? We have previously reported that offspring of obese male rats have altered glucose metabolism compared with controls and that this effect was inherited through nongenetic means. Here, we describe investigations into sperm DNA methylation in a new cohort using the same protocol. Male rats on a high-fat diet were 30% heavier than control-fed males at the time of mating (16-19 weeks old, n = 14/14). A small (0.25%) increase in total 5-methyl-2Ͳ-deoxycytidine was detected in obese rat spermatozoa by liquid chromatography tandem mass spectrometry. Examination of the repetitive fraction of the genome with methyl-CpG binding domain protein-enriched genome sequencing (MBD-Seq) and pyrosequencing revealed that retrotransposon DNA methylation states in spermatozoa were not affected by obesity, but methylation at satellite repeats throughout the genome was increased. However, examination of muscle, liver, and spermatozoa from male 27-week-old offspring from obese and control fathers (both groups from n = 8 fathers) revealed that normal DNA methylation levels were restored during offspring development. Furthermore, no changes were found in three genomic imprints in obese rat spermatozoa. Our findings have implications for transgenerational epigenetic reprogramming. They suggest that postfertilization mechanisms exist for normalising some environmentally-induced DNA methylation changes in sperm cells.

Keywords: methylation; obesity; spermatozoa


Full Text | PDF | 中文摘要 |

 
Browse:  1656
 
Asian Journal of Andrology CN 31-1795/R ISSN 1008-682X  Copyright © 2023  Shanghai Materia Medica, Chinese Academy of Sciences.  All rights reserved.