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Abstract

As genetic factors can hardly explain the changes taking place during short time spans, environmental and 
lifestyle-related factors have been suggested as the causes of time-related deterioration of male reproductive 
function.  However, considering the strong heterogeneity of male fecundity between and within populations, genetic 
variants might be important determinants of the individual susceptibility to the adverse effects of environment or 
lifestyle.  Although the possible mechanisms of such interplay in relation to the reproductive system are largely 
unknown, some recent studies have indicated that specific genotypes may confer a larger risk of male reproductive 
disorders following certain exposures.  This paper presents a critical review of animal and human evidence on how 
genes may modify environmental effects on male reproductive function.  Some examples have been found that 
support this mechanism, but the number of studies is still limited.  This type of interaction studies may improve 
our understanding of normal physiology and help us to identify the risk factors to male reproductive malfunction.  
We also shortly discuss other aspects of gene-environment interaction specifically associated with the issue of 
reproduction, namely environmental and lifestyle factors as the cause of sperm DNA damage.  It remains to be 
investigated to what extent such genetic changes, by natural conception or through the use of assisted reproductive 
techniques, are transmitted to the next generation, thereby causing increased morbidity in the offspring.
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1    Introduction

A time-related deterioration of male reproductive 
health during the past few decades has been suggested 
[1, 2], although these epidemiological trends remain 
debated [3, 4].  The most obvious example is the 

marked increase in the incidence of testicular cancer 
(TC) [5].  Concomitantly, it has been claimed that also 
malformations in the male reproductive tract, such as 
hypospadias [6] and cryptorchidism [7], have become 
more common.  Furthermore, some reports have 
indicated a decline in sperm counts [8, 9].  

Significant ethnic differences in the epidemiological 
trends in relation to male reproductive function 
have been observed.  Thus, white Americans have a 
substantially higher incidence of TC than African-
Americans [10].  The observation of a decline in sperm 
counts has been limited to some Western countries, but 
data for other parts of the world are very limited [9].  
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The rapidity of the deterioration in male reproductive 
health, which is most evident in the TC risk, points 
to an influence of environmental or lifestyle-related 
factors.  Considering the major ethnic differences 
in the occurrence of TC, it seems likely that genetic 
predisposition may modify adverse environmental effects.  
Insight into gene-environment (lifestyle) interaction in 
relation to the disorders of the male reproductive function 
may help establish causal inference.  Observational 
studies are prone to confounding and bias [11, 12].  
If associations between environmental factors and 
outcomes are modified by genetic factors in the predicted 
direction, this may greatly add to the reliability of the 
conclusions (see, for instance, a review of the studies 
on alcohol and oesophageal cancer modified by alcohol 
dehydrogenase enzymes [13]).  

In general terms, gene–environment interaction 
relates to the presence or absence of certain genetic 
variants influencing the risk of developing a disease 
due to environmental exposure or lifestyle (Figure 1) 
[14].  The concept has been linked to many other major 
pathologies as, for example, cancer [15, 16], obesity 
[17], diabetes and cardio-vascular diseases [18, 19], 
but regarding the disorders of the reproductive system, 

these mechanisms are not yet fully clarified and may 
also have other implications.

Another aspect of gene–environment interaction 
with specific relevance for the reproductive system is 
the possibility that environmental or lifestyle-related 
factors may affect the genome of the gamete, with a 
danger of phenotypic changes in the generations to 
come.

The aim of this paper is to critically review the current 
knowledge regarding gene-environment interaction and 
male reproductive function, based on relevant data in 
PubMed as well as based on our own research.  In this 
context, we will also shortly discuss the alterations in the 
sperm genome related to environmental exposure or life 
style.

2    Testicular dysgenesis syndrome

The concept of testicular dysgenesis syndrome 
(TDS) was introduced in 2001 [20], suggesting that 
poor semen quality, testicular germ cell cancer, unde-
scended testis and hypospadias were manifestations of 
one underlying entity (Figure 2).  TDS was thought to 
be a result of disrupted embryonal programming and 

Figure 1.  Schematic view of the concept of gene–environment interaction in relation to male reproductive function.  Two subjects 
exposed to the same environmental toxicant: (A): Man with a genetic variant implying increased susceptibility-cryptorchidism, 
testicular atrophia and no sperm production.  (B): Man with a genetic variant encoding for less susceptibility.
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gonadal development during foetal life.  Man-made 
chemicals that interfere with the function of endocrine 
systems, so-called endocrine disrupters (EDs), have 
been suggested as risk factors for TDS and are sup-
posed to act on a susceptible genetic background.  

3    Gene-environment interaction and animal studies

A number of animal studies have shown that genetic 
background may influence the susceptibility to effects 
of ED on the male reproductive system.  The effects of 
a potent toxicant, 2,3,7,8-tetrachlorodibenzo-p-dioxin 
(TCDD), that is supposed to act through the aryl hydro-
carbon receptor (AHR) have been studied in rats.  Fol-
lowing exposure to TCDD in adult life, strains with a 
mutated AHR allele had a less pronounced decrease in 
spermatogenesis than those with the wild-type receptor 
[21].  Similarly, when exposed to the same compound 
in utero, males of the rat strains carrying the mutated 
allele had a lower decrease in daily sperm production 
and epididymal sperm reserves than counterparts with 
the wild-type allele when measured on postnatal day 
70 [22].  Thus, the effects of TCDD exposure on sper-
matogenesis seemed to be decreased in rats with a mu-
tated AHR, implying that a fully functioning receptor 
is needed for maximal negative exposure effects on 
spermatogenesis.  Although it is not fully explained 
how a mutated AHR can protect against the deleteri-
ous effects of dioxin on sperm number, the paper by 
Simanainen et al. [22] showed that the effect is not 
mediated through reduction in testosterone production 
or poor development of seminal vesicles.  

Further, the testicular toxic effects of exposure in utero 
to the plasticizer dibutyl phthalate were reported to differ 
between two different substrains of Long-Evans rats [23].  
Out of the two strains, one had an inherited increased 
risk for cryptorchidism and also, following the phtha-

late exposure in utero, a significantly higher risk of 
reduction in prepubertal testis weight, signs of Leydig 
cell disturbance and increased histological defects in 
seminiferous cords.

However, in general, exposure levels far above 
those found in humans have been needed to evoke 
reproductive toxicity in the animal models and most 
studies have mainly been based on exposure to single 
compounds, not mimicking the multi-agent exposure 
of humans.  These reports have therefore often been 
overlooked and regarded as not relevant to humans.  

4    Human male reproductive function and gene-
environment interaction

4.1  Testicular cancer
There are several epidemiological trends indicating 

that environmental or lifestyle factors are important 
players in relation to the increase in incidence of TC 
seen during the past 4–5 decades [2].  The rapidity by 
which the increase in TC incidence has taken place, in 
combination with the fact that TC incidence seems to 
follow birth cohorts, indicates a strong environmental 
contribution to the underlying aetiology.  Thus, 
countries like Sweden, Norway and Denmark all report 
a decreased risk of this malignancy among men born 
during the Second World War [2].  The reasons are 
still unknown, but could be related to alterations in 
the way of living during the war.  It is also puzzling 
that significant differences in TC incidence can be 
found when comparing the Nordic countries that are 
geographically, socially and culturally very closely 
related: TC is twice as common in Sweden and five 
times more common in Denmark and Norway as in 
Finland [5].  In this case, a purely genetic explanation 
is appealing.  However, epidemiological data indicate 
that the environment in the country where one is born 

Figure 2.  Simplified schematic presentation of pathogenic links in testicular dysgenesis syndrome (adapted from ref [17]).
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or grows up plays an important role.  Thus, in a recent 
study from Denmark, the relative risk of TC in all first-
generation immigrants was much lower than the risk 
among sons of Danish parents born in Denmark [24].  
However, in the second-generation immigrants, the 
relative risk increased to an incidence almost as high 
as that in the general population of Danes.  This was in 
line with an earlier Swedish study that showed that TC 
incidence among first-generation Finnish immigrants in 
Sweden was only around 40% of the Swedish incidence, 
whereas the second generation had an incidence that 
was more similar to that in Swedish men [25].  These 
observations and the fact noted in the Danish study, that 
first-generation immigrant men arriving in Denmark, as 
early as before the age of 10, did not seem to have any 
increased risk compared with men arriving later, strongly 
indicate a substantial influence of environmental factors, 
probably in utero, in early childhood or at pubertal age 
[24].  Somewhat blurring the pattern was the finding in 
the Swedish study that second-generation sons of two 
Danish parents living in Sweden still had a doubled 
risk compared with the Swedish men, almost similar to 
the risk of the first-generation Danish men, indicating a 
particular link between TC risk and Danish habits [25], 
as sons of one Danish parent had an incidence similar 
to that of Swedish men.  The same was true for second-
generation immigrants born in Sweden and having one 
Finnish parent, with those men having a TC incidence 
that is approximately the same as the incidence in 
Swedish men.  

Mothers of men with TC have been reported to 
have higher concentrations of certain persistent organic 
pollutants (POPs), such as polychlorinated biphenyls 
(PCBs), as compared with women without sons having 
this disease [26, 27].  

There are several indications of the role of genetic 
susceptibility in relation to the risk of TC.  Brothers 
of affected men are at almost nine times increased 
risk of developing TC, this risk being higher than that 
for most other cancer types [28].  In twin brothers the 
risk of TC is nearly 40 times increased, being almost 
two times higher in dizygotic (DZ) twins as compared 
with monozygotic (MZ) twins.  This discrepancy 
was suggested to be due to the higher sex steroid and 
gonadotropin levels in DZ than in MZ pregnancies [29].  

Recent molecular studies have identified some 
genetic variants associated with the risk of TC.  It is 
well known that subjects with androgen insensitivity 
syndrome due to mutation in the androgen receptor 

gene have a very high risk of TC [30].
A recent genome-wide association study found 

strong evidence for a link between certain single-
nucleotide polymorphisms (SNPs) on chromosomes 5, 6, 
12 and the risk of TC.  The odds ratios (OR) per allele 
were found to be 1.4, 1.5 and 2.6, respectively [31].  
The SNPs were all shown to have a dose–response 
effect in a log-additive model, that is, men homozygous 
for the high-risk alleles on chromosome 12 had a six 
times increased relative risk.  

In another study investigating the impact of genes 
encoding for enzymes metabolizing certain EDs as well 
as hormones, polymorphisms in two genes, CYP1A1 
(cytochrome P450, family 1, subfamily A, polypeptide 1) and 
hydroxysteroid (17-beta) dehydrogenase 4 (HSD17B4), 
were found to modify the associations between levels 
of exposure to different POPs and the risk of TC [32].  
Men highly exposed to the pesticide chlordane and one 
of its metabolites, previously reported to be associated 
with the risk of TC [33], had a higher TC risk only if 
they carried two certain less common polymorphisms 
in the CYP1A1 gene.  Two other SNPs in the gene had 
previously been reported to appear to protect against 
the disease [34], and although the functional aspects of 
these genetic variations in relation to enzymatic activity 
are not fully clarified, it is plausible to assume that the 
human levels of ED are dependent not only on the level 
of exposure, but also on the rate of metabolism.  

Men with a high exposure to some PCBs had 
already been reported to have a lower incidence of 
TC [35], but, according to the previously mentioned 
study, seemed to be protected by  the PCBs only if they 
had a homozygous allele of the HSD17B4 gene [32] 
(Table 1).  These findings point to gene–environment 
interactions in relation to the association between ED 
exposure and TC risk.  However, as many interactions 
across a number of POPs and SNPs were examined, the 
probability of false interactions was not negligible and 
caution was imposed.  Another reason to caution is the 
relatively short time between the blood sampling for 
POP analysis and diagnosis (median 4.4 years), as the 
risk of TC has been suggested to be related to events 
taking place already during the foetal period and not in 
adult life, when these blood samples were obtained [36].  
However, the biological half-life of POPs is rather long 
(several years) [37] and high POP levels in adulthood 
could possibly reflect high levels already in the prenatal 
period.  Higher adult POP levels may not only reflect 
more extensive exposure but even a lower level of POP 
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metabolism, implicating that those subjects did have a 
life-long high exposure to the actual EDs.  

4.2  Fertility and semen quality
Infertility is a very common condition in Western 

countries , affecting approximately 15% of all couples 
[38].  Despite the fact that the male contribution has 
been estimated to be 50% of all cases, very little is 
known about the causes of impaired semen quality.  
Some well-known genetic disorders such as Kallmann’s 
syndrome, Klinefelter’s syndrome, Y chromosome 
microdeletions, androgen insensitivity and cystic 
fibrosis gene mutations only account for a few per 
cent of cases [39].  Even if cryptorchidism and cancer 
treatment is added to this list, the majority of cases 
remain unexplained.  Added to this, in this context the 
impact of environmental and lifestyle-related factors 
has attracted increasing attention.  

Trying to disentangle the impact of genes and 
environment on semen quality and sex hormone levels, 
MZ and DZ twin pairs, as well as pairs of singleton 

brothers, were investigated in a Danish study [40].  
Differences in traits among MZ twins were argued 
to indicate environmental effects, whereas similarity 
among MZ twins with differences in DZ twins 
indicated a genetic effect.  By comparing twins with 
singletons, an impact of prenatal environment was 
estimated.  A substantial hereditary component was 
found in plasma levels of hormones reflecting Sertoli 
cell function, in sperm cell chromatin stability and in 
sperm morphology.  In contrast, the data indicated that 
sperm count, to a large extent, is determined by factors 
operating in the prenatal environment.  

Although there are some examples of environmental 
disasters leading to subsequent impairment of semen 
quality among the exposed subjects [41], there are 
no substantial data demonstrating a link between the 
exposure at levels in the general population and sperm 
parameters, one of the exceptions being the pre- and 
postnatal effects of cigarette smoking [42–44].  

Androgens are known to play an important role 
in normal sperm production [45].  The androgen 

Table 1.   Human studies indicating gene-environment interaction in relation to male reproductive health.
Population              Genetics        Exposure                          Effect Reference 
Chinese workers Paraoxonase gene PON1 Organophosphate  Lower sperm count and morphology,       [51]
  (organophosphate  pesticides as compared with controls, in exposed 
  metabolism)  subjects with a gene variant encoding  
    for a more efficient enzyme
Czech men Gluthatione-S-transferase  Air pollution Higher level of impairment of sperm       [54] 
  M1 (GSTM1) (PAH meta-  chromatin integrity in exposed subjects
  bolism)   with GSTM1 null variant
Fertile and sub- Methylenetetrahydrofolate  Folate and zinc  Increase in sperm concentration only in      [55]
fertile Dutch men reductase MTHFR C677T  sulphate supple-  those with the wild type of the MTHFR
  polymorphism mentation
European but not Androgen receptor (AR)  p,p'-DDE Higher level of impairment of sperm      [50]
Inuit men CAG repeat  chromatin integrity in highly exposed 
    subjects with CAG repeats of ≤ 21, 
     but not in those with a repeat length
     of 22 or more
European and  AR CAG repeat Biomarker for PCB Forty per cent lower sperm number in      [50]
Inuit men  (CB-153)  highly exposed men with CAG repeats
     < 20, but not in those with longer repeats
American testicular CYP1A1 and HSD17B4  Persistent organic The association between exposure and       [32]
cancer patients and  encoding for hormone-  pollutants (POPs) cancer risk modified by the CYP1A1
controls metabolizing enzymes   and HSD17B4 genotypes
Abbreviations: AHR, aryl hydrocarbon receptor; AR, androgen receptor; CAG, a trinucleotide repeat of the nucleotides C, A and  
G in the androgen receptor; CYP1A1, cytochrome P450, family 1, subfamily A, polypeptide 1; GSTM1, Gluthatione-S-transferase 
M1; HSD17B4, hydroxysteroid (17-beta) dehydrogenase 4; MTHFR, methylenetetrahydrofolate reductase; PAH, polyaromatic 
hydrocarbons; PCB, polychlorinated biphenyls; POP, persistent organic pollutants; p,p'-DDE, dichlorodiphenyl dichloroethene; TCDD, 
2,3,7,8-tetrachlorodibenzo-p-dioxin.
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receptor (AR) function is modified by two polymorphic 
sequences, a polyglutamine-encoding trinucleotide 
repeat of C, A and G bases (CAG repeats) and another 
repeat of GG and any of the four nucleotides, encoding 
for polyglycine (GGN repeat).  Some studies have 
indicated an inverse correlation between the number 
of CAG repeats and receptor function [46], although 
others found this association to be non-linear [47].  

The CAG number was claimed to be inversely 
correlated with sperm number [48], and a recent study 
found an association between AR CAG polymorphism 
and sperm motility [49], wherein long repeats were 
associated with higher sperm motility.  In the same study, 
men with certain alleles of the sex hormone-binding 
globulin gene had a higher sperm concentration.  This 
indicates that not only genetic disease states but also 
normal variants in genes can affect male semen quality.

Recent data also indicate that polymorphisms in the 
AR not only have a direct impact on spermatogenesis 
but also modulate the effects of ED (Table 1).  

In an EU-supported study (www.inuendo.dk) on 
the impact of POPs on human reproductive function, an 
interaction between the length of the AR CAG repeats 
and blood levels of a metabolite of the banned pesticide 
dichlorodiphenyltrichloroethane’s metabolite, p,p′-
1,1-dichloro-2,2-bis (p-chlorophenyl) ethylene (DDE), 
in relation to the degree of DNA fragmentation in 
human sperm was found among Europeans, but not in 
Inuit men [50].  In the Europeans with a CAG stretch 
shorter than the median length, the DNA fragmentation 
index (DFI), as a measure of DNA damage, was 40% 
higher in highly exposed men than in those with low 
p,p′-DDE exposure.  This effect was absent among 
those with longer CAG repeats.  In the same study, an 
interactive effect was also observed between the PCB 
marker 2,2′,4,4′,5,5′-hexachlorobiphenyl (CB-153) and 
polymorphisms in the AR gene in relation to sperm 
counts.  In subjects with CAG numbers below 20 and 
highly exposed to the compound, total sperm number 
was 40% lower as compared with men with CB-153 
levels above the median.  Seemingly, men with short 
CAG repeats were more sensitive to the deleterious 
effects of PCB and p,p′-DDE.

In Chinese workers, the effects of organophosphate 
pesticides on semen quality have been studied in 
relation to polymorphisms in the paraoxonase gene, 
which is involved in the metabolism of these pesticides 
[51].  In the Chinese study, organophosphate pesticide 
exposure was associated with decreased sperm count 

and sperm concentration, but unexpectedly, exposed 
men with a variant of the paraoxonase gene encoding 
for a less efficient detoxifying enzyme had higher 
sperm counts and better morphology compared with 
exposed men with the more effective variant.  Caution 
is warranted because the sample size was very small 
and also in an earlier study a negative impact on semen 
volume and sperm count per se was reported [52], 
although the evidence is not entirely consistent [53].

An additional example of gene-environment interaction 
is the finding of an association between air pollution and the 
sperm DFI, in which a variant of the detoxifying enzyme, 
glutathione-S-transferase M1, was shown to increase 
susceptibility to the pollution, so that individuals who 
were carrying this genotype were less able to detoxify 
the reactive metabolites of carcinogenic polycyclic 
aromatic hydrocarbons [54].

The C677T polymorphism in the gene encoding for 
methylenetetrahydrofolate reductase, which is one of 
the key enzymes in the folate metabolism, was studied 
in 113 fertile and 77 sub-fertile males, and it was shown 
that the positive effect of folic acid and zinc sulphate 
supplementation on sperm concentration was seen only 
in subjects without the T-variant (CC homozygotes) [55].  
However, in this study, the polymorphism itself was not 
a risk factor for male sub-fertility.  

4.3  Hypospadias and cryptorchidism
A slight decrease in AR function due to an expanded 

GGN repeat sequence [56] has been suggested to 
predispose to development of penile hypospadias (but not 
glandular or penoscrotal) and to cryptorchidism, probably 
in combination with a hypoandrogenic milieu in the foetus 
[57].  Furthermore, the high proportion of the population in 
Greenland carrying the GGN length of 23 (85%) compared 
with Caucasians (54%) has been suggested to at least partly 
explain why, despite an extremely high exposure to POP 
among the Inuit population, the incidence of hypospadias 
in Greenland is 10 times lower than in Sweden [58].

A maternal genetic factor related to detoxification 
of environmental chemicals and estrogen metabolism 
(polymorphism in CYP1A1 gene) has also been associated 
with the risk of hypospadias in a Japanese case-control 
study including 31 cases and 64 controls [59].

5    The impact of environment and lifestyle on the 
genome of spermatozoa

An alternative interpretation of the term ‘gene-
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environment interaction’ in relation to male reproductive 
function is a scenario in which environmental or 
lifestyle-related exposure introduces damage to the sperm 
chromatin, there being a potential risk of such genomic 
changes being transmitted to the generations to come.  

Paternal smoking has been reported to introduce 
sperm DNA damage [60] and an increased risk of 
childhood cancer in the offspring in some studies [61–
63].  However, others could not find these associations 
[64, 65].  

Paternal occupation has also been linked to certain 
birth defects or diseases in the offspring, possibly due 
to genetic or epigenetic mechanisms [66].  Epigenetic 
abnormalities have been associated with imprinting 
diseases, for which a paternal role has been reported 
[67], and suggested to be increased in babies following 
conception by assisted reproduction.  

Foetal exposure to the pesticide vinclozolin was 
also suggested to introduce epigenetic changes, which 
would be passed to and would induce sub-fertility in, at 
least, three subsequent generations in rats [68].  These 
results have, however, not been replicated in two later 
studies [69, 70].

Studies on humans have also shown that environmental 
exposure may have an impact on sperm DNA.  Serum 
levels of CB-153, a marker of PCB exposure, were shown 
to be positively associated with the DFI measured using 
sperm chromatin structure assay.  Interestingly, this 
effect was seen only in Caucasian men but not in Inuit 
[71, 72].  It remains to be seen whether the relatively 
lower sensitivity of Inuit in relation to PCB-related 
sperm DNA damage is genetically dependent or relates 
to other types of concomitant exposure, as for example, 
nutritional factors [50].  

The level of exposure to other EDs, namely two 
different phthalate esters, monoethyl phthalate (MEP) 
and mono-(2-ethylhexyl) phthalate (MEHP), was also 
found to be associated with the degree of sperm DNA 
damage [73].

Lifestyle changes in the society have also contributed 
to an increase in paternal age, which per se is associated 
with an increase in sperm double-stranded DNA breaks 
[74].  These are in turn associated with genetic disorders, 
such as achondroplasia and Apert’s syndrome, and also 
diseases of complex aetiology, such as schizophrenia [75].  

Interestingly, a study on parental occupation and 
risk of TC showed increased risks associated with 
fathers who were wood processors (OR = 10.46), metal 
workers (OR = 3.28), employees of food products 

(OR = 2.79), metal products (OR = 5.77), and food 
and beverage services (OR = 4.36), but there was little 
evidence of risk associated with maternal employment 
[76].  In another study, no significant associations 
with occupation were found for all histological types 
of TC combined, whereas, for cases with seminomas, 
excess risks were seen for those with mothers in health-
related occupations (OR = 4.6) and fathers working in 
automobile service stations (OR = 4.0), manufacturing 
industries (OR = 2.2), and aircraft production and 
maintenance (OR = 5.3) [77].

Furthermore, male welding of stainless steel has 
been associated with an increased risk of spontaneous 
abortion in spouses [78].  

A Dutch study on the parental risk factors for 
cryptorchidism and hypospadias found that paternal 
pesticide exposure was associated with cryptorchidism 
and that paternal smoking was associated with 
hypospadias [79].

It could be speculated that the above-mentioned 
effects of paternal exposure might be mediated through 
exposure-related alterations in the sperm genome.  

5.1  Risks of transmitting genetic damage to children by 
assisted reproduction techniques

Sperm DNA damage seems to have a significant 
impact on the fertility in vivo, without affecting the 
chance of pregnancy following use of in vitro methods 
[80].  Thus, it can be argued that assisted reproduction 
techniques may by-pass the natural selection, especially 
when intracytoplasmatic sperm injection (ICSI) is used 
[81].  In fact, more birth defects, especially urogenital 
malformations in boys, have been reported in children 
born after ICSI compared with natural conception [82].  
It is, however, not known whether this increase is due 
to chromatin damage, related to the infertility problem, 
that subsequently is transferred to the offspring through 
ICSI or owing to some other cause.

Perhaps not surprisingly, paternal Y chromosome 
polymorphisms or rearrangements in the azoospermia 
factor region, leading to a compromised fertility, have 
been shown to be inherited by the sons through assisted 
reproduction [83] .

6    Concluding remarks

Information regarding how genetic predisposition 
may modify the adverse environmental effects on male 
reproductive health is still very scarce.  Few examples 
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indicate that such mechanisms are plausible.  The study 
of gene-environment interaction can help to dissect 
disease mechanisms in humans as well as determine 
specific exposures related to the risk of disease [14, 
84].  It provides both a useful means to improve our 
understanding of normal physiology [85] and pathology 
at the molecular level, as well as allows specific targeting 
of prevention and therapies to high-risk subjects [86].  A 
multi-disciplinary collaboration is necessary in order to 
carry out studies addressing this issue.
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