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Abstract

In this study, two commercially available superoxide scavengers, tetrakis (1-methyl-4-pyridyl) porphyrin 
(Mn[III]TMPyP) and superoxide dismutase (SOD), as well as red palm oil (RPO), a natural vegetable oil, had 
been used to investigate their possible in vitro effects against the toxic effects of superoxide (O2·) on human sperm 
motility.  Semen samples were obtained from 12 normozoospermic healthy volunteer donors aged between 19 and 
23 years.  The O2· donor 2,3-dimetoxyl-1,4-naphthoquinone (DMNQ) (2.5 mmol L-1–100 mmol L-1) was added to 
normozoospermic post-swim-up sperm in the presence or absence of Mn(III)TMPyP (50 mmol L-1), SOD (50 IU) 
or RPO (0.1% or 0.5%).  Computer-assisted semen analysis was used to analyze various motility parameters.  
The parameters of interest were percentage of motile cells, progressive motility, rapid cells and static cells.  
Concentrations of higher than 25 mmol L-1 DMNQ were detrimental to sperm motility.  Mn(III)TMPyP was able to 
attenuate the effect of O2· on the motility parameters.  In vitro addition of SOD and RPO showed harmful effects on 
sperm motility.  

Asian Journal of Andrology (2009) 11: 695–702.  doi: 10.1038/aja.2009.55; published online 5 October 2009.

Keywords: antioxidants, motility, red palm oil, superoxide

1     Introduction

Sperm motility has been shown to be a good pre-
dictor of human male fertility both in vivo and in vitro 
[1].  Motility parameters such as progressive motility, 
rapid cells and static cells determine the quality of 
human semen and are clinically important [2].  This 
implies that any natural or pharmaceutical compounds 
that enhance sperm motility might improve male ferti
lity.  However, sperm cells are under constant attack 

by reactive oxygen species (ROS), which had been as-
sociated with sub-fertility or even infertility [3–5].  The 
most common ROS that have potential implications in 
reproductive biology include superoxide anion (O2·−), 
hydrogen peroxide (H2O2), peroxyl radicals and the 
very reactive hydroxyl radical [3, 6, 7].  

In sperm cells, the sources of ROS are broadly dis-
persed between external and internal sources.  External 
production of ROS, particularly O2·− and H2O2, can be 
the result of leukocyte contamination within the semen.  
Another important source of ROS is immature and 
morphologically abnormal spermatozoa [8].  Recently, 
two mechanisms involved in ROS generation in sper-
matozoa, per se, have been characterized in rat epidi-
dymal spermatozoa [9].  One mechanism depends on 
the mitochondrial respiratory chain, whereas the other 
mechanism relies on an enzymatic system related to the 
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reduced nicotinamide adenine dinucleotide phosphate 
oxidase family found bound to the sperm plasma mem-
brane [9].  The mitochondrial electron transport chain is 
known to produce ROS not only during physiological, 
but also during pathological conditions.  This produc-
tion of ROS can be correlated to physical activity.  The 
topology of O2· production has been determined in the 
different complexes of the respiratory chain.  Interest-
ingly, complexes I, II and III were found to produce 
hydrogen peroxide, albeit at very low levels [10].  

Excessive production of ROS is associated with 
peroxidative damage to the sperm plasma membrane 
and DNA.  This can result in poor sperm quality and 
male factor infertility [11, 12].  Lipid peroxidation 
(LPO) of the sperm membrane is considered to be the 
key mechanism of ROS-induced sperm damage.  Sper-
matozoa, unlike other cells, are unique in structure, 
function and susceptibility to damage by LPO [13].  A 
balance between the cellular production of ROS and 
their destruction by scavengers in sperm and in seminal 
plasma is vital for the cell survival.  Oxidative stress 
(OS) arises as a consequence of excessive ROS production 
and/or impaired antioxidant defense mechanisms [8].  A 
variety of defense mechanisms including antioxidant 
enzymes (superoxide dismutase (SOD), catalase, 
glutathione peroxidase and reductase), vitamins (E, 
C and carotenoids) and biomolecules (ubiquinol) are 
involved [14, 15].  Studies have shown that some 
pharmaceutical [16] and nutritive substances [17, 18] 
improved sperm motility.  Red palm oil (RPO), which 
is regarded as the only vegetable oil with a balanced 
composition of saturated and unsaturated fatty acids 
both in processed and unprocessed forms [19], contains 
carotenoids, phosphatides, sterols, tocopherols and trace 
metals [20, 21].  These agents are natural antioxidants 
and act as scavengers of oxygen-free radicals [22, 23].  

In this study, two commercially available super
oxide scavengers, Mn(III)TMPyP and SOD, as well as 
RPO, a natural cocktail of antioxidants, had been used to 
investigate their possible in vitro effects against the toxicity 
of superoxide on human sperm motility parameters. 

2     Materials and methods

2.1  Sperm collection
Semen samples were obtained from 12 normo

zoospermic healthy donors aged between 19 and 
23 years, after 2–3 days of abstinence, according to 
the World Health Organization criteria [24].  Semen 

samples were collected in sterile containers and allowed 
to liquefy for 30 min at 37ºC.  Ethical approval from 
the Institutional Review Board was obtained and donors 
have provided consent to participate in this study. 

2.2  Semen preparation
Motile sperm fractions were retrieved from the 

samples using a double wash in fresh Hams-F10 
medium (400 × g, 5 min, Sigma Chemical Co., St. 
Louis, MO, USA) swim-up technique (Hams-F10 + 
bovine serum albumin, 3%, Sigma, 37ºC, 5% CO2).  
After 1 h, the supernatant containing motile sperm was 
collected. Sperm concentrations were determined by 
means of computer-assisted semen analysis (CASA), 
and the retrieved cells were divided into aliquots and the 
concentration was adjusted to 2 × 106 cells per mL. 

2.3  Sperm motility determination
Sperm cells were incubated at 37ºC with or without 

50 µmol L-1 Mn(III)TMPyP (Sigma) or 50 IU mL−1 
SOD (Sigma), or 0.1% or 0.5% RPO.  RPO (Carotino 
SDN BHD Co: 69046-T, Johar-Bahru, Malaysia) was 
dissolved in propylene glycol as described previously 
[25] to administer the oil to an aqueous sperm suspension.  
After 30 min, 2,3-dimetoxyl-1,4-naphthoquinone 
(DMNQ), an O 2· genera tor (Cal b iochem, San 
Diego, CA, USA, dissolve in DMSO) was added at 
concentrations of 0 µmol L-1, 2.5 µmol L-1, 5 µmol L-1, 
10 µmol L-1, 25 µmol L-1, 50 µmol L-1 and 100 µmol L-1 
to the sperm samples and incubated for a further 60 min 
at 37ºC. 

Several sperm motility parameters were determined 
by means of CASA on Hamilton-Thorne IVOS 
analyzers (Hamilton-Thorne Research, Beverly, MA, 
USA).  The parameters of interest were percentage of 
motile cells, progressive motility, rapid cells and static 
cells, as they give a good indication of the general 
motility, DNA integrity and fertilizing ability status 
of spermatozoa [2].  The Hamilton-Thorne IVOS 
settings were as follows: Image capture—30 frames at 
60 Hz; minimum contrast—80; minimum cell size—2; 
minimum static contrast—30; Progressive velocity: path 
velocity (VAP)—25 m s−1 and Straightness (STR)—80%; 
Slow cells: static VAP cut-off, 5 µm s−1 and straight-
line velocity (VSL) cut-off—11 µ s−1; head size; STR 
= VSL/VAP × 100; Rapid cells = % of all cells moving 
with VAP > MVV; Medium = % of all cells moving 
with LVV < VAP > MVV; Slow = % of all cells moving 
with VAP < LVV or VSL < LVS; Static = % of cells that 
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are not moving at all; slow cells classified as not motile.

2.4  Statistical analyses
GaphPadTM PRISM 4 (GraphPad Software Inc., La 

Jolla, CA, USA) was used for all statistical evaluations.  
A one-way analysis of variance (ANOVA) test (with 
Bonferroni post test if P < 0.05) was used for statistical 
analyses.  Data are expressed as mean ± SEM.  Differences 
were regarded statistically significant if P < 0.05 and 
highly significant if P < 0.001.

3     Results

3.1  The effects of exogenous superoxide on sperm 
motility parameters

From Table 1, it can be seen that the in vitro addition 
of exogenous superoxide in the form of DMNQ 
considerably decreased the percentage of motile cells, 
progressive motility and rapid cells at a concentration 
of 50 µmol L-1 DMNQ.  On the other hand static cells 
notably increased already from 25 µmol L-1 DMNQ 
when compared with the control (0 µmol L-1 DMNQ).  
Table 2 shows a decrease in the percentages of motile 
cells, progressively motile cells and rapid cells from 25 to 
100 µmol L-1 DMNQ.  However, the percentages of the 
static cells for all concentrations from 5 to 100 µmol L-1 
DMNQ were significantly higher than control values.  
Table 3 shows the addition of 25–100 µmol L-1 DMNQ 
extensively decreased the percentage of motile cells while 
increasing the static cells.  The percentages of progressive 
motility and rapid cells, was however significantly 
lower than control values for all concentrations from 2.5 
to 100 µmol L-1 DMNQ.

3.2  The effects of superoxide on sperm motility para­
meters in the absence or presence of Mn(III)TMPyP

Table 1 shows that the addition of Mn(III)TMPyP 
reversed the negative effect of superoxide on motile cells, 
progressive motility and rapid cells at 50 µmol L-1 DMNQ 
and static cells at 25 µmol L-1 DMNQ.  Moreover, 
Mn(III)TMPyP treatment considerably decreased the 
percentage of motile cells at 100 µmol L-1 DMNQ.   
However, Mn(III)TMPyP treatment notably increased 
the percentage of static cell at 100 µmol L-1 DMNQ. 

3.3  The effects of superoxide on sperm motility para­
meters in the absence or presence of SOD

Table 2 shows that samples treated with DMNQ 
in combination with SOD showed considerably lower Ta
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percentages of motile cells, progressive motility (from 
50 to 100 µmol L-1 DMNQ) and rapid cells (at 2.5, 10 and 
50 µmol L-1 DMNQ) compared with control (0 µmol L-1 
DMNQ).   Samples treated with DMNQ in combination 
with SOD have increased static cells (2.5 and 100 µmol L-1 
DMNQ) compared with control (0 µmol L-1 DMNQ) 
values. 

3.4  The effects of superoxide on sperm motility para­
meters in the absence or presence of RPO

The addition of 0.1% and 0.5% RPO (Table 3) 
significantly decreased the percentages of motile cells, 
progressive motility and rapid cells compared with the 
control from 50 to 100 µmol L-1 DMNQ.  Moreover, 
0.1% and 0.5% RPO considerably increased the number 
of static cells at 10, 50 and 100 µmol L-1 DMNQ.

4     Discussion

4.1  The effects of superoxide on sperm motility parameters
In this study, it was found that the addition of exogenous 

superoxide in the form of DMNQ at 100 µmol L-1 radically 
reduced the percentage of motile cells, progressive 
motility, and rapid cells, as well as led to an increase 
in the number of static cells.  It is therefore clear that 
O2·, in the form of exogenously added DMNQ, is 
deleterious to sperm motility and sperm function at 
higher concentrations.  These results are in agreement 
with De Iuliis et al. [26], who showed that human 
spermatozoa are capable of generating O2·− and that 
the production of this oxygen radical is inversely 
correlated with defective sperm function.  Gil-
Guzman et al . [27] showed that levels of ROS 
p r o d u c t i o n w e r e n e g a t i v e l y c o r r e l a t e d w i t h 
teratozoospermia and spermatozoa developmental 
stages.  ROS production was found to be highest in 
the immature fraction of ejaculated sperm, which also 
contained sperm with abnormal head morphology 
and cytoplasmic retention.  It has been suggested 
that ROS induces membrane LPO in sperm and that 
the toxicity of the generated fatty acid peroxides are 
important causes of decreased sperm function, for 
example, motility [28, 29].  Previous studies [8, 28, 
30, 31] had shown a correlation between high levels 
of ROS (superoxide, hydroxyl, hydrogen peroxide, 
nitric oxide and peroxynitrile) and decreased sperm 
motil i ty.  De Lamirande and Gagnon [32] also 
showed that ROS causes sperm immotility within 
5–30 min, depending on the concentration.

4.2  The effects of superoxide on sperm motility para­
meters in the absence or presence of Mn(III)TMPyP 

Manganese (Mn) is an essential ultra trace element 
similar to chromium, molybdenum and cobalt.  It is 
needed for a wide variety of physiological processes 
ranging from the regulation of reproduction to normal 
brain function [33].  Mn can exist in various oxidation 
states ranging from −3 to +7, with +2 oxidation state 
being the most predominant in biological systems 
[33].  Although redox active metals such as Fe(II) can 
accelerate LPO, ionic Mn (10–100 mmol L-1) has been 
shown to inhibit LPO in rat liver microsomes [34].  
In addition, several known Mn complexes including 
the Mn salen and Mn bis(cyclohexylpyridine)-
substituted macro cyclic ligand have shown promise 
as a possible SOD mimic [35–37].  Studies have 
shown that these complexes are as effective as SOD 
enzymes in detoxifying superoxide under some 
experimental conditions [38].  Metalloporphyrins such 
as Mn(III)TMPyP are a unique class of stable catalytic 
antioxidants possessing a broad range of antioxidant 
capacities that include the dismutation of superoxide 
[39–41], hydrogen peroxide [42] and scavenging of 
peroxynitrite [43, 44].  Metalloporphyrins exhibit 
other antioxidant capacities in addition to superoxide 
dismuting activity such as catalase-like activity [42], 
inhibition of LPO [45].  In vitro models of OS have 
been useful both in terms of confirming the antioxidant 
activities of metalloporhyrins obtained in cell-free 
systems and predicting their use as antioxidants in 
more complex in vivo models of human disease.  
Metalloporphyrins have been shown to be protective 
in a wide variety of in vitro OS models involving the 
generation of O2·, H2O2 and ONOO alone or in concert.

The addition of Mn(III)TMPyP (50 µmol L-1) 
attenuated the effects of superoxide on the number of 
static cells (5 and 10 µmol L-1 DMNQ).  As a result, 
it offered some form of protection to sperm motility 
against the harmful effects of superoxide.  However, 
Mn(III)TMPyP decreased the percentages of motile 
cells and increased static cells at high concentrations of 
O2.  This finding is interesting or rather contradictive 
to the protective properties ascribed to Mn(III)TMPyP.  
Nevertheless, this finding is in agreement with Lin et al. 
[33] who found that Mn exhibits pro- and antioxidant 
characteristics in their study done on worms.  Despite 
several reports suggesting the beneficial effects of Mn 
in unicellular organisms, it is well known that chronic 
exposure to high atmospheric levels of Mn is toxic [33].  
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Studies have shown that an overload of Mn causes 
the disease ‘manganism’, which has Parkinson’s-like 
symptoms [46, 47].  

4.3  The effects of superoxide on sperm motility 
parameters in the absence or presence of SOD

The addition of SOD (50 IU mL−1) exacerbated the 
harmful effect of superoxide by drastically reducing motility, 
progressive motility (from 50 to 100 µmol L-1 DMNQ) and 
rapid cells (at 2.5, 10 and 50 µmol L-1 DMNQ). 

Contradicting reports exists regarding the effect of 
antioxidant supplementation on sperm motility in both 
fresh liquefied and frozen-thawed semen from various 
species, including human [17, 48–51], the effect being 
dependent of the antioxidant employed and the dose 
used [52].  Johnson and Guilivic [53] argued that the 
conversion of superoxide anion to hydrogen peroxide 
by SOD may have anti- and pro-oxidant consequences. 
On the one hand, the dismutation of O2· to H2O2 and 
oxygen facilitates both the distribution of ROS, that is, 
diluting their effects through diffusion between cellular 
compartments, and the removal of H2O2 by H2O2-
consuming enzymes (antioxidant).  On the other hand, 
if the actions of SOD and H2O2-consuming enzymes 
are not in concert, an increased production of H2O2 is 
expected from SOD activity.  

Sikka [6] has shown that a relationship exists 
between an increase in ROS-induced OS, LPO, 
decreased levels of SOD and motility in spermatozoa. 
de Lamirande and Gagnon [32] argued that motility 
is impaired because of adenosine tr iphosphate 
depletion during LPO of the sperm plasma membrane.  
Peroxidation increased in proportion to the decrease 
in SOD effects [54].  Therefore, the time of complete 
motility loss is determined by the rate of peroxidation 
[54] and so would correlate with SOD activity [55].  
The dismutation of O2·− by SOD converts it into a 
powerful oxidant, H2O2, which can readily penetrate 
sperm cells, lower their motility and cause irreparable 
damage to both DNA and membranes [54].  All these 
arguments might explain our findings.

4.4  The effects of superoxide on sperm motility 
parameters in the absence or presence of RPO

Crude palm oil is known to be the richest natural 
plant source of carotenoids in terms of provitamin A 
equivalents, such as a-carotene and b-carotene [20, 
56].  The dietary intake of foods rich in carotenoids was 
associated with a reduced risk of some types of cancer [57, 

58] and cardiovascular diseases [59], presumably affording 
antioxidant properties to reduce OS when tested in both 
endothelial and non-endothelial cells.  Palm oil containing 
these antioxidants was shown to be effective against OS in 
vitro and in vivo [60].  Vitamin E and related compounds 
are also abundant in RPO.  Chow and Hong [61] 
reported that dietary vitamin E is capable of reducing 
the production and/or availability of not only O2·−, but 
also NO and ONOO−. However, it is not clear whether 
the action of vitamin E to reduce the generation of 
O2·− and other ROS is independent of its antioxidant 
function. 

However, the combination of RPO and DMNQ 
significantly decreased motile cells (50–100 µmol L-1) and 
also increased the percentage of static cells (DMNQ 
2.5–100 µmol L-1).  As RPO is a lipid and hydrophobic, 
it can possibly explain why no marked positive effects 
were seen with co-treatment, as it might not have 
been possible to deliver its antioxidant properties to 
the affected spermatozoa.  Owing to its lipid nature, it 
could furthermore negatively affect the spermatozoa 
directly in solution.  

In conclusion, this study has shown that Mn(III)
TMPyP offered better protection against the harmful 
effects of O2·− than SOD or RPO when using sperm 
motility as an in vitro end point.  We recommend that 
future studies should include the oral administration of 
different concentrations of RPO to animals for a period 
long enough to target complete spermatogenesis and 
epididymal maturation.  This could give a much better 
appraisal of the possible phytotherapeutic and protec-
tive effects RPO can have on ejaculated sperm.     
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