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Male sex determination: insights into molecular
mechanisms
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Disorders of sex development often arise from anomalies in the molecular or cellular networks that guide the differentiation of the

embryonic gonad into either a testis or an ovary, two functionally distinct organs. The activation of the Y-linked gene Sry (sex-

determining region Y) and its downstream target Sox9 (Sry box-containing gene 9) triggers testis differentiation by stimulating the

differentiation of Sertoli cells, which then direct testis morphogenesis. Once engaged, a genetic pathway promotes the testis

development while actively suppressing genes involved in ovarian development. This review focuses on the events of testis

determination and the struggle to maintain male fate in the face of antagonistic pressure from the underlying female programme.
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INTRODUCTION

Perceptions of sex and sexuality pervade modern culture. However, it

is important to recognize that not all members of our society fit com-

fortably the socially constructed ideas of masculinity and femininity.

These people are likely to struggle with a variety of medical and psy-

chosocial issues surrounding their sexuality.1,2 It is estimated that

1.7% of all live births have a disorder of sex development (DSD).3,4

These conditions are congenital and are characterized by chromo-

somal or gonadal sex that does not match outward appearance of

maleness or femaleness, or anatomical sex that is in some way ambigu-

ous or intermediate between male and female.4 Some of these condi-

tions are associated with infertility, predisposition to gonadal tumours

and/or other syndromic features.5,6 Clearly, discovery of the under-

lying molecular causes of DSDs is an important goal in biomedical

research.

Genomic and structure/function studies of human DSDs have

revealed a number of genes as being important for sex development,

while studies in the mouse have further extended our understanding of

the mechanism of action of these genes; these approaches are comple-

mentary. Identifying the molecular mechanisms behind sex deter-

mination and differentiation will lead to more accurate diagnosis

and prognosis, and assist in providing more informed options for

psychological, endocrinological, surgical and other clinical manage-

ment of DSDs, many of which remain uncharacterized at a molecular

level. In a broader context, understanding the events of early testis

development may also illuminate some of the underlying causes of

male infertility.

In this review, we examine the molecular mechanisms behind male

sex determination and differentiation, and how impairment of these

mechanisms underlies a subset of human DSDs. In particular, we

highlight the interplay between the molecular pathways that promote

male and female development, and the role of gene dosage and pheno-

type sensitivity in mice and humans.

SRY AND THE BEGINNINGS OF MALENESS

We each inherit an X or a Y sex chromosome from our father and an X

chromosome from our mother during fertilisation. The resulting

chromosomal sex (XX or XY) leads to the transformation of the

embryo into a male or a female. Before gonadal sex determination

in both XX and XY embryos, a bipotential gonadal primordium exists

that has the potential to differentiate into either testes or ovaries.

Activation of the Y-linked gene Sry (sex-determining region Y) initiates

testicular development. When Sry is expressed ectopically in XX mice,

the testis pathway is initiated.7 When Sry is not present, as in XX

individuals, or non-functional in XY individuals, the bipotential

gonads generally do not follow the testicular pathway and instead

develop into ovaries.8,9

SRY plays a role in a number of DSDs: mutation or loss of function

of SRY results in complete male to female sex reversal,10,11 whereas

ectopic expression of SRY in XX individuals due to chromosomal

translocation of SRY may result in female to male sex reversal.

Indeed, SRY translocation is responsible for 10% of all 46,XX female

to male sex reversal.12 Formation of ovotestes, where ovarian and

testicular tissues coexist in the same organ, can also occur in cases of

ectopic SRY activity.13,14

SRY is a transcription factor with a DNA-binding high-mobility

group box domain.15,16 In mice, expression of Sry is both brief and

carefully regulated; however, the factors controlling this burst of

expression remain unknown. One of the factors postulated to play a

role in activation of Sry is Wilms’ tumour 1 (WT1), which can act as a
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transcriptional activator17,18 or repressor.19 WT1 has two active iso-

forms in the gonad, with either an insertion or an omission of three

amino acids, lysine (K), tyrosine (T) and serine (S), between two zinc

finger motifs.20,21 Each isoform has distinct functions during mouse

testis determination. Knockout mice show that WT11KTS, although

unlikely to be directly regulating Sry expression, is required for main-

tenance of the gonad.20 However, this WT1 isoform has been shown

to be able to transactivate the human SRY promoter in vitro.22

Conversely, WT11KTS-null mice exhibit complete XY sex reversal,

presumably due to abnormally low Sry expression.20 In agreement

with the mouse model, WT1 haploinsufficiency, resulting in reduced

levels of WT11KTS, results in XY sex reversal in human patients.23 It

is proposed that WT11KTS is involved in cell-autonomous regu-

lation of Sry in vivo, as indicated by reduced SRY levels in cells of

WT11KTS-null mouse gonads.24 It is important when interpreting

these results to take into account the fact that knocking out one WT1

isoform leads to an increase in expression of the other, which may have

an impact on the observed phenotype and interaction with SRY.

In addition to sufficiently early onset of expression of Sry, a thresh-

old level of expression must be achieved for complete testis differen-

tiation to occur. In mice, expression of Sry is initiated at 10.5 days

post-coitum (d.p.c.), peaks at 11.5 d.p.c. and is extinguished by 12.5

d.p.c.25–27 Sry expression occurs in a wave-like pattern, beginning

in the central region of the gonad and expanding out towards the

poles.28–31 In humans, SRY has a broader spatiotemporal expression

profile, occurring in multiple tissues such as the adrenal and heart, and

being maintained for longer in the testis, apparently through to adult-

hood.32 Sry/SRY is also expressed in the brain of mice and humans.32–34

In mice, SRY is expressed in a subset of nigrostriatal doperminergic

neurons in the brain and appears to affect the specific motor behaviours

they control.35 However, although SRY is suspected of being involved in

sexual dimorphism of the brain, a specific role for SRY outside sex

determination has yet to be conclusively demonstrated.

Before turning to the cellular role of SRY, it is important to discuss

briefly the course of events that occur as the testis differentiates. The

gonads arise from a pair of bipotential primordia known as the genital

ridges. In males, differentiation of the bipotential supporting cell lin-

eage into Sertoli cells results in organisation of the developing testis

into two main compartments: the testis cords, which comprise aggre-

gates of germ cells surrounded by a layer of Sertoli cells in turn encased

by peritubular myoid cells, and the testis interstitium which includes

the steroidogenic Leydig cells and the testis vasculature. The develop-

ment of secondary sexual characteristics in the embryo, such as

external genitalia, is directed by the testes. Thus, the morphogenesis

of the bipotential gonads into testes dictates the phenotypic sex of the

male individual (Figure 1).

In mice, the first known cellular difference between the XX and XY

gonad after expression of Sry is the male-specific proliferation of the

epithelium at the coelomic surface of the genital ridges.36,37 This sex-

specific proliferation is thought to amplify the population of cells

capable of differentiating into Sertoli cells, the first testicular cell

type to differentiate,38 and is required for the formation of testis

cords.36,37,39 Thus far, the molecular mechanism that induces coelo-

mic epithelial proliferation is unknown. We do know a direct molecu-

lar target of SRY: the gene encoding the transcription factor Sox9 (Sry

box-containing gene 9).40 Because testes develop normally in transgenic

XX mice overexpressing Sox9, it appears that male-specific prolifera-

tion of the coelomic epithelium and all other aspects of foetal

testis development are under the control, directly or indirectly, of

SOX9.41,42

SOX9 AND THE DIFFERENTIATION OF THE SERTOLI CELL

Sox9 is upregulated when a protein complex of SRY and steroidogenic

factor 1 ((SF1) nuclear receptor subfamily 5, group A, member 1)

binds to a Sox9 enhancer element known as testis-specific enhancer

of Sox9 core element (TESCO).40 Like SRY, SOX9 is necessary for

testis differentiation: mice lacking Sox9 undergo complete XY sex

reversal,43,44 while 75% of human patients with a heterozygous muta-

tion in SOX9 manifest with complete or partial XY sex reversal.45,46

The proposed mechanism for XY gonadal transcription of Sox9

during sex determination consists of three distinct phases, according

to Sekido and Lovell-Badge.40 Firstly, SF1 initiates low-level transcrip-

tion of Sox9 in XX and XY genital ridges. Secondly, SF1, in a complex

with SRY, activates male-specific transcription of Sox9 in the male

genital ridge via TESCO. High levels of SOX9 are then maintained

in the XY gonad via an autoregulatory feedback loop.40,47 Indeed, in

vitro studies using SF1, SRY and SOX9 mutant proteins, modelled on

clinical human mutations from 46,XY DSD patients, support this

model. These proteins failed to activate the human homologue of

TESCO, providing a potential mechanism by which mutations

resulting in partially functional proteins can present as DSDs.48

Figure 1 Overview of mouse gonadogenesis. The expression of Sry and Sox9 at

10.5–11.5 d.p.c. in the bipotential gonad initiates testis differentiation. By 13.5

d.p.c., basic testis morphology is established; the formation of testis cords, the

coelomic blood vessel, and differentiation and activation of steroidogenesis in

Leydig cells has occurred, and androgens are then produced by the testes. In the

ovary, further differentiation is delayed. Around 13.5 d.p.c., germ cells have

entered meiosis and vascularisation, and remodelling of the ovary to form germ

cell cysts occurs. Later, the cortical and medullar domains begin to be estab-

lished and folliculogenesis takes place. Secondary sexual characteristics include

the establishment of the male and female genital tract and duct system, sex-

specific brain dimorphisms and behaviours, and external genitalia. The estab-

lishment of secondary sexual characteristics involves organ-specific, regulatory

gene networks. d.p.c., days post-coitum; FLC, foetal Leydig cell; Sox9, Sry box-

containing gene 9; Sry/SRY, sex-determining region Y.

Molecular mechanisms of male sex determination
K McClelland et al

165

Asian Journal of Andrology



It is believed that bipotential supporting cells cell-autonomously

differentiate into Sertoli cells under the influence of SRY and SOX9:

this conclusion was drawn from XX–XY chimaera studies in which it

was found that, when testes formed, almost all Sertoli cells were XY,

while other cell types did not exhibit a chromosomal bias.49,50

However, some Sertoli cells were always found to be XX,49 indicating

the existence of paracrine pathways by which SRY- and SOX9-positive

cells can recruit additional cells (such as XX cells in the chimaera

experiments, or cells that express unusually low levels of Sry in normal

XY gonads) to the Sertoli fate.

Two independent mechanisms of Sertoli cell recruitment are

known: fibroblast growth factor 9 (FGF9) and prostaglandin D2

(PGD2) recruitment. Kim et al.51 demonstrated using Fgf9-null mice,

which exhibit XY sex reversal,52 that FGF9 is required only for the

maintenance of SOX9 expression, not its initiation. However, ectopic

application of FGF9 to XX gonads induces SOX9 expression.51,53

Hiramatsu et al.54 showed that Fgf9 expression occurs in a wave eman-

ating from the central zone of the gonad similar to Sry and Sox9.

Inhibition of FGF signalling repressed the expansion of the Sox9-pos-

itive domain in the XY gonad. Furthermore, removal of the central

segment or isolation of the central domain of the testis before the

expansion of Fgf9 signalling resulted in failure of tubulogenesis in

the anterior and posterior segments. Based on these findings,

Hiramatsu et al.54 proposed a system where FGF9 was produced in

the central domain of the gonad by newly specified Sertoli cells, from

which it was secreted and rapidly diffused towards the gonadal poles

where it recruited cells to the Sertoli fate by reinforcing the expression

of Sox9. This mechanism is supported by evidence from Fgfr2-null

(FGF-receptor 2) mice whose phenotype is similar to Fgf9-null mice,

displaying male-to-female sex reversal and suggesting FGFR2 is the

receptor for FGF9 in the XY gonad. Indeed, conditional deletion of

Fgfr2 in pre-Sertoli cells shows that FGFR2 is required in pre-Sertoli

cell differentiation.55

Independently, PGD2, an early product of the testis, is also able to

induce Sertoli cell differentiation in vivo by amplifying SOX9 activity

and canalizing the male pathway. Treatment of XX gonads with PGD2

resulted in upregulation in Sox9 and its direct downstream target Amh

(the gene encoding anti-Müllerian hormone), masculinizing the XX

gonad.56–58 However, Pgds (prostaglandin D2 synthase)-null testes,

after a delay in Sertoli cell differentiation, develop normally, indicating

that this mechanism is a nonessential backup system for Sertoli cell

recruitment.56 The requirement of theses backup systems and the need

to continually reinforce the male programme may stem from the weak

but critical role of SRY and the need to actively suppress the under-

lying female programme. Existence of these recruitment mechanisms

ensures that as many cells as required are pulled into the Sertoli fate to

allow successful differentiation of the gonad.

THE ROLE OF THE TESTIS VASCULATURE

Vascular patterning in the gonad is a sex-specific process.59 Testis

vasculature is formed by migration of endothelial cells into the devel-

oping testes.60,61 By 12.5 d.p.c., a prominent artery known as the

coelomic blood vessel can be seen along the anterior–posterior length

of the testis, in addition to extensive microvasculature. Ectopic coe-

lomic vessel-like structures were observed in gonads of XX mice

mutant for Rspo1 (R-spondin homologue 1), Wnt4 (wingless-related

MMTV integration site 4), Fst (follistatin) and Ctnnb1 (catenin (cad-

herin-associated protein), beta 1).62–66 Rspo1 is a regulator of WNT4

signalling which involves Ctnnb1, while Fst is downstream of WNT4,67

implicating the WNT signalling pathway in vessel formation and

patterning. Additionally, overexpression of Wnt4 disrupts normal tes-

tis vasculature, indicating that WNT4 inhibits formation of gonad

vasculature.68 Notably, where testis vasculature is disrupted, as in

the WNT4 overexpressing mice, Sertoli and foetal Leydig cells still

differentiate.65,68

Recently, it has been discovered that the vascularisation of the testis

plays an important instructive role in testis cord formation.60,61 When

endothelial migration was suppressed in testes by blocking vascular

endothelial growth factors with VEGF-Trap or by using an antibody

against vascular endothelial cadherin, testis cord morphogenesis was

impaired.60,69 Antagonizing vessel maturation also reduced prolifera-

tion of interstitial mesenchymal cells that appear to segregate the

precursor territories for testis cords; this proliferation could be res-

cued by the addition of platelet derived growth factor isoform BB

(PDGF-BB).61,69,70 However, the mechanisms governing testis vascu-

larisation and cord segregation are still unclear.

LEYDIG CELLS: THE KEY TO PHENOTYPIC MASCULINISATION

Foetal Leydig cells (FLCs) produce steroid hormones that reinforce

male-specific differentiation of the testis (for review, see Ref. 71). The

FLC populations in humans and mice are similar during foetal life,72,73

although observation of the induction of steroidogenesis largely lim-

ited to steroid level quantification. The origins of FLCs in humans

remain unclear. In the mouse, FLCs arise by about 12.5 d.p.c. (for

review, see Ref. 74), and recent work involving cell lineage tracing

and live imaging suggests that they arise from multiple origins includ-

ing the coelomic epithelium and the gonad/mesonephros border.53

Several pathways and molecules have been implicated in their differ-

entiation and maintenance. SF1 marks presteroidogenic and pre-

Sertoli cells in the developing genital ridge75,76 and acts as a key regu-

lator of genes encoding steroid hydroxylases, which later distinguish

FLCs.77 Members of the hedgehog signalling pathway, desert hedge-

hog (DHH), which is secreted by Sertoli cells, and its receptor patched

homologue 1 (PTCH1), which is expressed by the interstitium, have

been shown to be positive regulators of FLC differentiation.78 Dhh-

null mice have a FLC differentiation defect.78 Human patients with

mutations in DHH present with mixed, partial or pure gonadal dys-

genesis through to seemingly unaffected carriers.79–81 In addition,

chemical inhibition of hedgehog signalling at 11.5 d.p.c. completely

abolished expression of steroidogenic enzymes, confirming that

DHH/PTCH1 signalling is essential for FLC differentiation.78 Gli1

(glioma-associated oncogene family zinc finger 1) and Gli2 (glioma-

associated oncogene family zinc finger 2) are downstream targets of

hedgehog signalling and are expressed exclusively in the testis inter-

stitium in a manner similar to PTCH1.82 However, Gli1- and Gli2-null

mice display normal FLC differentiation, perhaps indicating func-

tional redundancy between the GLI factors in FLCs.82 Ectopic activa-

tion of the hedgehog signalling pathway in SF1-positive ovarian cells

is sufficient to differentiate these cells into functional FLCs within an

ovarian environment.83 These ectopic cells upregulated SF1 and were

able to partially masculinize the phenotype of the XX embryo.83

Additionally, Pdgfr-a (platelet-derived growth factor receptor, alpha

polypeptide) and Arx (Aristaless-related homeobox) have been iden-

tified as being critical for FLC differentiation in knockout mouse

models.84,85

GERM CELLS: THE ORIGIN OF SPERM

Germ cells are the precursors of oocytes and spermatozoa in the foetal

gonad. The sexual fate of the germ cell is determined by signalling

factors that the germ cells are exposed to upon entry to the gonad,
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rather than by their chromosomal constitution.58,86–89 Much of what

is known about the origin and regulation of the germ cells is derived

from studies in mice, as discussed below.

In an ovary, germ cells must enter meiosis during foetal life if

they are to initiate oogenesis correctly; conversely, meiosis must be

avoided in male germ cells in the foetus if they are to embark on the

spermatogenic pathway. The interplay between FGF9 and retinoic

acid (RA) appears to be key to the correct specification of the germ

cells in the mouse: meiosis is induced by RA in the foetal ovary and

inhibited by FGF9, which is secreted by Sertoli cells, in the foetal

testes.86–88,90 In the developing testis, meiosis is avoided because RA

is degraded by the P450 enzyme CYP26B1 (cytochrome P450, family

26, subfamily b, polypeptide 1).91 Thus, CYP26B1 acts to suppress

meiosis indirectly by the removal of RA, while FGF9 directly sup-

presses meiosis and acts to maintain pluripotency.86–88 This mech-

anism is supported by in vivo evidence from Cyp26B1-null mice

where degradation of RA does not occur in XY gonads, resulting

in upregulation of RA-responsive Stra8 (stimulated by retinoic acid

gene 8) and germ cell entry into meiosis.87,91

Recently, a double-knockout of Aldh1a2/Aldha1a3 (aldehyde dehy-

drogenase family 1, subfamily A2/A3), genes encoding key synthesizers

of RA in the mesonephros, demonstrated that some meiosis still

occurred in the foetal ovary.92 These data indicate that either RA does

not drive meiosis or, more likely, that there is an additional source of

RA that remains in these mice. More in-depth analysis of this model

will be required to clarify this point. Regardless, a strong antagonism

exists between meiosis-promoting (female) factors and meiosis-sup-

pressing (male) factors that push the resident germ cells into their

respective fates.

Relatively, little is known about whether these mechanisms are

used in humans. Culture experiments demonstrate that the RA initi-

ates meiosis in the human ovary and can upregulate STRA8.93,94

However, it appears that the human gonad has the capacity to produce

RA, evidenced by the strong expression of ALDHA1A1 (aldehyde

dehydrogenase family 1, subfamily A1) in the ovary around the time

of meiosis initiation.93,94 Most striking is the apparent lack of

CYP26B1 expression in the foetal human testes and the expression

of RA receptors, indicating that the testes may be exposed to, and

may be able to respond to, RA, unlike the situation in the mouse.93,95

Male germ cells are fated to enter G1/G0 arrest in the foetal testes.89

Retinoblastoma 1 is a cell cycle regulator necessary for male germ cells

to enter arrest at the appropriate time. In XY retinoblastoma 1-null

mice, the germ cell population fails to enter G1/G0 arrest appropri-

ately.96 To compensate cell cycle suppressors, cyclin-dependent kinase

inhibitors 1b and 2b are upregulated and after a delay can induce

arrest.96

OVOTESTES: WHAT THEY REVEAL ABOUT MALE–FEMALE

ANTAGONISM IN THE EMBRYO

The study of ovotestes in mouse models has provided numerous

insights into the antagonism between the male and female pathways

during sex determination. When the Y chromosome derived from

Mus poschiavinus, YPOS, is backcrossed to a C57/BL6 (B6) background,

varying degrees of sex reversal are observed in the XY progeny.97 This

phenomenon is thought to be due to defective interaction between Sry

on YPOS and autosomal sex-determining genes in B6.98 Detailed

expression studies have shown that a delay in the commencement of

Sry expression, and subsequently, Sox9 expression is the likely cause of

B6-YPOS partial sex reversal.98–100 Wilhelm et al.30 found that although

Sry was expressed throughout the genital ridge in B6-YPOS mice, the

upregulation of Sox9 and activation of downstream testis differenti-

ation pathways only took place in the central zone where Sry expres-

sion was initiated.25,28,29,31 These findings indicate that expression of

Sry in the poles, which in ovotestes differentiate into ovarian tissue,

does not reach the required expression threshold early enough. This

failure to upregulate Sox9 in pre-Sertoli cells allows the expression of

key ovarian differentiation genes and the engagement of the ovarian

programme. Therefore, male–female antagonism underlies the suc-

cessful differentiation of the gonad. When the balance of factors is

altered, even slightly, the underlying battle between the testicular

and ovarian fate is revealed.

MOLECULAR BALANCING ACTS: EXAMPLES OF ANTAGONISM

BETWEEN MALE AND FEMALE PATHWAYS

In order to understand the molecular mechanisms behind male sex

determination, we must also understand what is occurring molecu-

larly in the antagonistic female programme at the time of sex deter-

mination. It has become clear that the ovarian programme, although it

is considered the ‘default’, is an active genetic programme in its own

right.101 The antagonism between the male and female pathways has

been illustrated using genetic approaches (Figure 2). In an early study

of male–female antagonism, the male pathway was suppressed by

knocking out Fgf9; as a result, the female pathway was promoted,

indicated by the upregulation of WNT4.51 Conversely, when the

female pathway was suppressed by knocking out Wnt4, the male path-

way was stimulated.102 This phenomenon correlates to cases in DSD

patients where WNT4 loss or mutation results in XX masculinisation

and duplication results in XY feminisation.68,103 This male–female

antagonism is further supported by ex vivo work. Treatment of XX

gonads with ectopic FGF9 suppressed normal WNT4 expression and

induced ectopic upregulation of Sox9.51 Thus, readouts of the male

Figure 2 Model of molecular interactions and proposed levels of antagonism in

testis and ovary. For details see text. In the embryonic XY gonad, Sry is activated

via a mechanism involving WT1 (indirect regulation illustrated by dotted arrow/

line). SRY then directly upregulates Sox9, direct regulation illustrated by solid

arrow/line) which maintains its own expression; positive feedback loops exists

between PGD2/SOX9 and FGF9/SOX9. In the XX gonad, FOXL2 is active as are

RSPO1, b-catenin and WNT4, which is required for expression of Fst. During

embryonic development, antagonism is though to exist between FGF9/WNT4,

SOX9/WNT4 and SOX9/FOXL2. Postnatally, antagonism exists between SOX9/

FOXL2 and DMRT1/FOXL2. DAX1, Nr0b1, nuclear receptor subfamily 0, group

B, member 1; DMRT1, doublesex and mab-3-related transcription factor 1;

FGF9, fibroblast growth factor 9; FOG2, ‘Friend of Gata1’ type 2; FOXL2, forkhead

box L2; Fst/FST, follistatin; GATA4, GATA-binding protein 4; PGD2, pros-

taglandin D2; RSPO1, R-spondin homologue 1; SF1, steroidogenic factor 1;

Sox9/SOX9, Sry box-containing gene 9; Sry/SRY, sex-determining region Y;

WNT4, wingless-related MMTV integration site 4; WT1, Wilms’ tumour 1.
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pathway, SOX9 and FGF9 can increase in response to a weakening of

the female programme and vice versa.

Recent studies have shown that the balance between the antagon-

istic testicular and ovarian differentiation programmes is also import-

ant postnatally. Gonad-specific transcription factors doublesex and

mab-3-related transcription factor 1 (DMRT1) and forkhead box L2

(FOXL2) have roles in maintenance of the testes and ovaries respec-

tively.104 In humans, DMRT1 hemizygosity may result in hypogona-

dism, often with streak gonads.105 FOXL2/FoxL2 is a key ovarian

marker, and its mutation is associated with premature ovarian failure

in human patients and knockout mice.104,106,107 Dmrt1-null males

were found to have numerous FOXL2-positive cells in the seminifer-

ous tubules 4 months after birth.108 A Sertoli cell-specific knockout of

Dmrt1 confirmed that loss of DMRT1 in Sertoli cells and not germ

cells allows ectopic FOXL2 expression.108 However, FOXL2 may also

be able to repress DMRT1, as shown by strong upregulation of

DMRT1, when FOXL2 is ablated postnatally,109 suggesting the exis-

tence of a mutual antagonism necessary for maintaining sex differ-

entiation throughout life.

FOXL2 has also been shown to antagonize SOX9 in the adult ovary

and is postulated to also play a role in the embryonic testes.

Conditional deletion of FoxL2 at 8 weeks resulted in transdifferentia-

tion of granulosa cells in the adult ovary to Sertoli-like cells expressing

SOX9 even in the presence of oocytes and theca cells, the steroidogenic

cells of the ovary, differentiated into Leydig-like cells.109 In the adult

ovary, it was demonstrated using chromatin immunoprecipitation

that FOXL2 can repress TESCO activity,109 providing a possible

mechanism for the role of FOXL2 in maintaining ovarian function

postnatally. FoxL2 is also upregulated in XY embryonic gonads of

Sox9-conditional null mice indicating that a similar mechanism exists

during embryonic sex differentiation.43 However, importantly,

expression of male and female factors in the gonad is exclusive, as

observed in the ovotestes,30 such that FOXL2 and SOX9 are never

coexpressed in the same cell. Nevertheless, while the factors mentioned

in the above section are responsive to each other’s loss, direct interaction

and antagonism between any of these factors is yet to be demonstrated.

SF1: HIGHLIGHTING THE ROLE OF GENE DOSAGE

DIFFERENCES IN THE MOUSE AND HUMAN

SF1 is a striking example of a factor whose effects on gonadal pheno-

type are sensitive to dosage and genetic background.75 Sf1-null mice

undergo early gonadal and adrenal development, but the organs

regress by 11.5 d.p.c.75,110 Transgenic expression of SF1 in Sf1-null

mice was able to rescue gonad development, but not adrenal develop-

ment.111 Additionally, Sf1-haploinsufficient mice have disrupted

adrenal development but develop testes normally.112 Together, these

results indicate that SF1 is involved in gonad and adrenal organ main-

tenance and that, in the mouse, the adrenal is more sensitive to Sf1

dosage than the gonad. However, there is evidence that the reverse is

true in humans. Two patients with heterozygous mutations in SF1

have been shown to exhibit gonadal dysgenesis but normal adrenal

function, indicating that, in humans, testis development is more sen-

sitive to Sf1 dosage than adrenal gland development.113,114

DAX1: A QUESTION OF GENE DOSAGE AND GENETIC

BACKGROUND

Dax1 (Nr0b1, nuclear receptor subfamily 0, group B, member 1) expres-

sion in the mouse indicates a role in early sex determination, with Dax1

being expressed in both sexes initially before being downregulated in

the testes.31,115 Duplications of chromosomal region Xp21.2–21.1,

which includes DAX1, are sufficient to impair testis differentiation

in 46,XY human patients and induce male-to-female sex reversal (dos-

age-sensitive sex reversal).116–118 These data imply that DAX1 acts as

an antitestis gene, antagonizing the action of SRY. Similarly, over-

expression of Dax1 in mice can induce male-to-female sex reversal.

However, only mice highly overexpressing Dax1 and which also have a

weakened male sex-determining pathway driven by a YPOS chro-

mosome, show complete male-to-female sex reversal.
31

A common

interpretation of these data is that mice and humans may have different

sensitivity thresholds for DAX1 dosage.

An alternative explanation is that genetic background and the pres-

ence of genetic modifiers can explain whether or not gonad sex

reversal occurs. Genetic background is a key determinant in the pene-

trance of a number of sex reversal phenotypes, with heterozygous

mutants often displaying different phenotypes depending on their

genetic background. Bouma et al.119 compared sex development in

Gata4 (GATA-binding protein 4)120,121 and Fog2 (‘Friend of Gata1’

type 2; Zfpm2, zinc finger protein, multitype 2)120,121 heterozygous

mutants on B6/YAKR, B6, D2/YAKR and D2 backgrounds, which have

decreasing sensitivity to sex reversal. They found that ovaries or ovo-

testes developed in these mutants, but only on the B6/YAKR back-

ground. All other strains developed testes normally. These studies

demonstrate the importance of genetic background, and also clearly

indicate a role for GATA4 and FOG2 in foetal testis development. A

similar background dependance was observed in the generation of

sex-reversed Dax1 mutant mice.31,122–124 Given that genetic back-

ground and the presence of genetic modifiers can explain whether

or not gonad sex reversal occurs, it follows that effects attributed to

differences in dosage sensitivity between humans and mice might also

be explained by genetic background.

Given the expectation that Dax1 acts as an antitestis gene, deletion

of Dax1 in mice produced a surprising result: ovaries formed normally

in Dax1-null XX mice, but in XY mice with a deletion of Dax1, testis

cord formation was abnormal.123 Moreover, in XY Dax12/2/YPOS

mice, complete male-to-female sex reversal was observed.124 Sub-

sequent studies revealed the cause of the male-to-female sex reversal:

Sox9 is not upregulated in XY Dax1-null mice, despite normal express-

ion of Sry.125 Nonetheless, strong overexpression of Sry in XYPOS

Dax1-null mice was able to upregulate Sox9, correcting testis develop-

ment and producing fertile males.125 These results are somewhat in

accord with findings in humans, with respect to DAX1 mutations.

46,XY patients with deletion of, or mutations in, DAX1, exhibit the

male phenotype, but have hypogonadotrophic hypogonadism and

disorganized testis cords, indicating that DAX1 is not essential for

the initial stages of human gonad development, but is required for

testis development.117,124,125 As there is evidence that DAX1 can work

in both ‘antitestis’ and ‘protestis’ capacities, it is possible that correct

function in the testis occurs only within a ‘window’ of activity invol-

ving two concentration thresholds. In this scenario, DAX1 activity

beyond an upper threshold, for example, in cases of DAX1 duplication,

may act to antagonize testis differentiation, while DAX1 activity below

a lower threshold, for example, in cases of mutation, may allow

ovarian differentiation to occur.126

CONCLUSIONS AND PERSPECTIVES

From the above discussion, it is clear that initial specification of

Sertoli cells is a result of SRY expression, with the effects of SRY

mediated largely if not entirely by SOX9. A complete understanding

of male sex determination and testis morphogenesis, therefore,

largely depends on a deeper understanding of the molecular and
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cellular roles of SOX9, and therefore, on the discovery and

characterisation of all transcriptional targets of SOX9. Further, it

remains to be clarified how the Sertoli cell directs events during

morphogenesis; that is, what signalling molecules are produced by

these cells and how they influence the differentiation of the other

testicular cell lineages. How the other cell lineages, once masculi-

nized, then contribute to testis morphogenesis is also a question that

requires further investigation. A greater understanding of the

molecular interactions involved in the process of testis differenti-

ation will provide new avenues for DSD diagnosis and management.

Commitment to the male fate and then maintenance of that fate is

achieved only by overcoming the progress of the female pathway, and

antagonistic interplay is seen during foetal life, as well as postnatally.

Mutual antagonism is likely to be facilitated by transcription factors

such as SOX9 and FOXL2, but assays to determine the molecular

interactions that underpin these antagonistic relationships have yet

to be completed. Understanding what factors facilitate antagonism

between the male and female programmes will lead to a greater under-

standing of what pushes individuals into or out of the two typical sex

phenotypes specified by XX and XY chromosomes.

Additionally, as demonstrated here, sex-determining genes often

respond in a dosage-dependent manner that may also be influenced

by genetic background. As a result, human DSDs and mouse models

may not always phenocopy each other, highlighting the need for a

collaborative approach to DSD identification and diagnosis between

researchers and clinicians. Human patient cases demonstrate, especially,

that gene dosage and genetic background can be important factors in

phenotype severity. However, despite this, the investigation of gene

dosage effects and the effects of genetic background on sex determining

genes in the mouse is a question that few researchers have addressed and

that warrants further detailed investigation. Tools, such as inducible

knockout and single-copy transgenesis strategies, are now available to

study these phenomena in the mouse. Thus, better integration of lessons

from both human cases and mouse models must be a priority. Finally, it

is clear that integration of clinical findings and mouse models will con-

tribute to a better understanding not only of the causes of human DSDs

but also of the basic biology of sex determination in the male.
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