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Differentiation of murine male germ cells to spermatozoa
in a soft agar culture system

Mahmoud Abu Elhija1, Eitan Lunenfeld2, Stefan Schlatt3 and Mahmoud Huleihel1

Establishment of an in vitro system that allows the development of testicular germ cells to sperm will be valuable for studies of

spermatogenesis and future treatments for male infertility. In the present study, we developed in vitro culture conditions using

three-dimensional agar culture system (SACS), which has the capacity to induce testicular germ cells to reach the final stages of

spermatogenesis, including spermatozoa generation. Seminiferous tubules from testes of 7-day-old mice were enzymatically

dissociated, and intratubular cells were cultured in the upper layer of the SACS in RPMI medium supplemented with fetal calf

serum (FCS). The lower layer of the SACS contained only RPMI medium supplemented with FCS. Colonies in the upper layer were

isolated after 14 and 28 days of culture and were classified according to their size. Immunofluorescence and real-time PCR were

used to analyse specific markers expressed in undifferentiated and differentiated spermatogonia (Vasa, Dazl, OCT-4, C-Kit, GFR-

a-1, CD9 and a-6-integrin), meiotic cells (LDH, Crem-1 and Boule) and post-meiotic cells (Protamine-1, Acrosin and SP-10). Our

results reveal that it is possible to induce mouse testicular pre-meiotic germ cell expansion and induce their differentiation to

spermatozoa in SACS. The spermatozoa showed normal morphology and contained acrosomes. Thus, our results demonstrate that

SACS could be used as a novel in vitro system for the maturation of pre-meiotic mouse germ cells to post-meiotic stages and

morphologically-normal spermatozoa.
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INTRODUCTION

In mammalian species, spermatogenesis occurs in the seminiferous

tubules of the testis and relies on the appropriate expansion of undif-

ferentiated and differentiated spermatogonia prior to the entry of

germ cells into meiosis and subsequent spermiogenesis.1,2

Several attempts have previously been made to establish and optim-

ize germ cell cultures using specific culture media, growth factors, sera,

conditioned media of testicular or non-testicular origin and feeder

layers.1,3–12 However, none of these conditions have successfully gen-

erated spermatozoa.

Most attempts to culture male germ cells have been performed

using two-dimensional cell culture systems. We recently described a

novel three-dimensional cell culture system using soft agar (SACS)11

(Figure 1). This culture system is more representative of the in vivo

conditions as it mimics some aspects of the natural three-dimensional

environment a cell is exposed to in an organ.13,14 In the past, the three-

dimensional SACS has been used to investigate proliferation and dif-

ferentiation of bone marrow and haematopoietic cells in vitro.15,16 We

hypothesize that this approach is adaptable to male germ cells and will

optimize the microenvironment for clonal expansion and differ-

entiation of germ cells. In a recent review, we provided preliminary

evidence that pre-meiotic mouse germ cells differentiated into

morphologically normal sperm using SACS.17 Here, we provide all

experimental details, and we present additional evidence by detailed

analysis of germ cell clusters, using real-time PCR and immunofluor-

escence. We provide evidence that a progressive development of germ

cells occurs in vitro and that SACS is an appropriate strategy for the

expansion and differentiation of immature mouse testicular germ

cells. Starting with pre-meiotic germ cells, SACS supports the develop-

ment of mature spermatozoa with intact acrosomes.

MATERIALS AND METHODS

Animals

This investigation was conducted in accordance with the Guiding

Principles for the Care and Use of Research Animals Promulgated

by the Society for the Study of Reproduction. Sexually mature (4- to

8-week-old) or immature (7- and 14-day-old) BALB/c mice (Harlan

Laboratories, Jerusalem, Israel) were used.

Chemicals and reagents

Collagenase V and DNAase (2000 KU) were obtained from Sigma (St

Louis, MO, USA). RPMI, penicillin, streptomycin and fetal calf serum

(FCS) were purchased from Beit Haemek Biological Industries (Beit

Haemek, Israel). Agar was purchased from Bacto-Agar (Difco

Laboratories, Detroit, MI, USA).
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Isolation of mouse spermatogonial cells

Tubular cells were isolated from the testes of 7-day-old male BALB/c

mice. At this age, the testis does not contain any meiotic germ cells and

the seminiferous epithelium comprises proliferating Sertoli cells and a

mixture of undifferentiated and differentiating type A spermatogonia.

Testicular cell suspensions were obtained as described by Zeyse et al.18

Briefly, the testes were decapsulated and mechanically digested by

multiple aspirations through pipette tips (eight aspirations through

2-mm diameter tips followed by 10 aspirations through 1-mm dia-

meter tips) into a 50-ml syringe following the addition of 20 ml phos-

phate-buffered saline (PBS). Mechanical digestion was continued

until the tubules were completely dissociated. Thereafter, the tubules

were allowed to settle by gravity and washed three times with PBS.

Supernatants containing the interstitial cells were discarded. The

tubules were transferred to a 50-ml culture flask and subjected to

digestion in saline containing collagenase type V (1 mg ml21) and

DNAse (1 mg ml21) for 25 min in a shaking water bath (120 cycles

min21 at 37 uC). The suspension was then aspirated three times with a

pipette and incubated for an additional 5 min in a 37 uC shaking water

bath. This isolation procedure resulted in a single cell suspension

consisting of Sertoli cells and spermatogonia (as these are the only

germ cells present at postnatal day 7) as well as a small proportion of

peritubular cells.

The intratubular cell suspension was filtered through sterile surgical

gauze and washed by centrifugation for 5 min at 200g at room tem-

perature. The cells were suspended in RPMI and counted.

The same method, using testes from 14-day-old and mature mice,

was used to prepare a suspension of tubular cells to be used as a

positive control for immunostaining and real-time PCR analysis.

The suspension from adult mice contains germ cells of all spermato-

genic stages (undifferentiated spermatogonia to spermatozoa).

SACS

The conditions for the clonogenic culture of testicular cells in SACS

were selected in accordance with previous experiments performed on

haematopoietic stem cells.16 Briefly, the SACS was composed of two

layers (Figure 1): the solid lower layer (0.5% (w/v) agar) and the soft

upper layer (0.37% (w/v) agar) and cultured in 24-well plates. To

establish definite concentrations of agar and cells, 0.7% (w/v) agar

and 1% (w/v) agar were mixed with distilled water during the pre-

paration of the upper and lower phases, respectively. Tubular cells (106

cells per well per 200 ml) were cultured in the upper layer of the soft

agar medium (0.37% agar1RPMI120% (v/v) FCS, tubular cells; final

volume of 200 ml). Cell suspensions were added to the RPMI prior to

mixing with the agar. The agar and the RPMI/cells were mixed at 37 uC
to avoid heat-induced cellular stress and premature agar coagulation.

This layer was added on top of the lower layer after it had solidified.

The solid agar base (lower layer; final volume of 800ml) contained both

RPMI and 25% (v/v) FCS and 0.5% (w/v) agar only. All culture

experiments were maintained in standard cell culture incubators at

37 uC and 5% CO2 for up to 4 weeks.

Cells in the culture dish were defined as colonies when more than 50

cells were present and were further classified into colonies containing

more than 50 cells but less than 150 cells (small; S), more than 150 but

less than 300 cells (medium; M) and more than 300 cells (large; L). The

analysis of colonies was performed microscopically after incubation

for two or four weeks. Colonies (S, M and L) were counted separately

in each well of the same treatment group (4–6 wells in each treatment

group).

Colonies (S, M and L) were manually picked under microscopic

observation using a microtip, and the cells in this sample were pro-

cessed for RNA detection and immunofluorescence analysis. Colonies

from all wells of the same treatment were determined with respect to

their size and were collected into the same tube for RNA extraction.

Cells from different experiments were stored in different tubes and

analysed separately. In addition, extracted RNA from the colonies was

examined for the expression of androgen binding protein (ABP) (a

specific marker for Sertoli cells), alpha-smooth muscle (a-Sm) (a spe-

cific marker for peritubular cells; P) and immune cell markers, such as

those for macrophages (CD11-b).

Analysis to evaluate spermatogonial cell differentiation stages

Extraction of total RNA for reverse transcription (RT-) PCR and real

time PCR analysis. First-strand complementary DNAs (cDNAs) were

synthesized from 2.5 mg total RNA (from testicular homogenates) or

using the entire extracted RNA when colonies were picked) with 0.5 mg

random oligonucleotide primers (Roche Molecular Biochemicals,

Mannheim, Germany) and 200 U of Moloney-Murine Leukaemia

Virus-Reverse Transcriptase (M-MLV-RT; Life Technologies, Inc.,

Paisley, Scotland, UK) in a total volume of 20 ml Tris-HCl-MgCl

reaction buffer, supplemented with DTT, dNTPs (0.5 mmol l21;

Roche Molecular Biochemicals) and RNase inhibitor (40 U; Roche

Molecular Biochemicals). The RT reaction was performed for 1 h at

37 uC and stopped for 10 min at 75 uC. The volume of 20 ml was

subsequently filled up to 60 ml with treatment water. Negative controls

for the RT reaction were prepared in parallel, using the same reaction

preparations with the same samples, without M-MLV. RT-PCR was

performed using cDNA samples at a final dilution of 1 : 15 with two

pairs of oligonucleotide primers (Sigma) (Table 1).

To assess the absence of genomic DNA contamination in RNA

preparations and RT-PCR reactions, PCR was performed with nega-

tive controls of the RT reaction (RT-) and without cDNA (cDNA-).

The PCR reactions were carried out on a Cycler II System Thermal

Cycler (Ericomp, San Diego, CA, USA). Twenty microlitres of each

PCR product was run on a 2% agarose gel that contained ethidium

bromide and was photographed under UV light. The amount of

mRNA used in each RT-PCR experiment was 50 ng.

Figure 1 Scheme of the SACS. The SACS was composed of two layers: the solid

lower layer (0.5% (w/v) agar) and the soft upper layer (0.37% (w/v) agar), which

were cultured in 24-well plates. Testicular tissue from immature mice (a) was

mechanically separated to obtain interstitial tissue and tubules (b). The tubules

were enzymatically digested (c), and the isolated tubular cells (d) were used for

culture in the upper phase of the SACS (e). Tubular cells (106 cells per well per

200 ml) were cultured in the upper layer of the soft agar medium. Cultures were

incubated in 5% CO2 incubator at 37 uC. FCS, fetal calf serum; SACS, Soft Agar

Culture System.
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Real-time PCR analysis

Real-time quantitative PCR amplification of total cDNA (500 ng per

sample) used specific primers of the different sequences (Table 2).

The reactions were conducted following the protocol for the

Absolute qPCR SYBR Green mix (ABgene House, Blenheim Road,

Epsom, UK) containing modified Tbr DNA polymerase, SYBR

Green, optimized PCR buffer, 5 mmol l21 MgCl2, dNTP mix and

dUTP. The PCR reaction was performed using a real-time PCR

machine (MyIQ; Bio-Rad Laboratories, Richmond, CA, USA) accord-

ing to the manufacturer’s instructions. The following PCR protocol

repeated 45–50 times was used: denaturation (95 uC for 10 min),

amplification and quantification (94 uC for 10 s), 72 uC for 30 s with

a single fluorescence measurement, melting curve (60–95 uC with a

heating rate of 0.5 uC per 30 s and a continuous fluorescence measure-

ment) and a cooling step to 4 uC. PCR products were identified and

distinguished by the generated melting curve. The ‘threshold cycle’

(Ct) values, which represented the cycle number at which the sample

fluorescence rose statistically above background, and crossing points

for each transcript were defined. The relative quantity of gene express-

ion was analysed by the 2{DDCt method.

To ensure accurate products and the absence of contaminating

DNA, all real-time PCR products were also examined in parallel by

PCR analysis with the negative controls.

Immunofluorescence staining of cells from colonies developed in

SACS

Cells were fixed in cold methanol for 10 min and stored at 4 uC until

stained. Before the primary antibodies were applied, nonspecific

background staining was blocked with PBS containing 4% FCS and/

or antibodies against the relevant IgG isotype. Thereafter, polyclonal

rabbit anti-mouse C-Kit (4 mg ml21), rabbit anti-mouse GFR-a-1

(4 mg ml21), rabbit anti-mouse CD9 (4 mg ml21), rabbit anti-mouse

a-6-integrin (4 mg ml21), rabbit anti-ETQEDAQKILQEAEKLNYK-

DKKLN peptide (1 : 300), rabbit anti-mouse Crem-1 (4 mg ml21), goat

anti-mouse lactate dehydrogenase (LDH) (4 mg ml21), goat anti-

mouse Protamine (4 mg ml21), goat anti-mouse Acrosin (4 mg

ml21), goat anti-mouse Dazl (4 mg ml21) and rabbit anti-mouse

Vasa (4 mg ml21) antibodies were used as primary antibodies. All

antibodies were purchased from Santa Cruz Biotechnology, Inc.

(Santa Cruz, CA, USA). The primary antibodies were incubated over

night at 4 uC in PBS containing 4% FCS. PBS was used for all sub-

sequent washing steps. Fluorescein-conjugated antibodies (Cy3; don-

key anti-rabbit or donkey anti-goat antibodies; 4 mg ml21; Jackson

ImmunoResearch, West Grove, PA, USA) were used for visualisation

of the signal according to the suppliers’ directions. After 1 h of incuba-

tion, the slides were washed in PBS and subsequently subjected to

DAPI staining (Santa Cruz Biotechnology, Inc). Negative controls

were included for each specimen using PBS containing FCS/BSA

instead of the primary antibodies.

Immunofluorescence staining of mouse testicular tissue

Four-micron thick sections from formalin-fixed, paraffin-embedded

testicular tissue blocks were mounted on saline-coated slides, dried at

37 uC for 48 h and stored at room temperature. Before the primary

antibodies were applied, nonspecific background staining was blocked

with PBS containing 0.05% casein and/or relevant antibodies for the

Table 1 Reverse transcription (RT-) PCR primers

Stage Target Primer Sequence Tm (uC) Size (bp)

Pre-meiotic Nanog Forward

Reverse

39-AGGGTCTGCTACTGAGATGCTCTG-59

59-CAACCACTGGTTTTTCTGCCACCG-39

57 363

VASA Forward

Reverse

39-GGTCCAAAAGTGACATATATACCC-59

59-TTGGTTGATCAGTTCTCGAGT-39

57 419

OCT-4 Forward

Reverse

39-AGAAGGAGCTAGAACAGTTTGC-59

59-CGGTTACAGAACCATACTCG-39

57 416

C-KIT Forward

Reverse

39-GCATCACCATCAAAAACGTG-59

59-GATAGTCAGCGTCTCCTGGC-39

57 331

GFR-a-1 Forward

Reverse

39-GGCCTACTCGGGACTGATTGG-59

59-GGGAGGAGCAGCCATTGATTT-39

57 462

a-6-integrin Forward

Reverse

39-AGGAGTCGCGGGATATCTTT-59

59-CAGGCCTTCTCCGTCAAATA-39

57 502

CD9 Forward

Reverse

39-ATCTTCTGGCTCGCTGGCATT-59

59-ATGGCTTTGAGTGTTTCCCGCT-39

57 373

Meiotic Crem-1 Forward

Reverse

59-TTCTTTCACGAAGACCCTCA-39

59-TGTTAGGTGGTGTCCCTTCT-39

57 114

LDH Forward

Reverse

39-GCACGGCAGTCTTTTCCTTAGC-59

59-TCGCGCCAGATCAGTCACAG-39

57 585

Post-meiotic Protamine Forward

Reverse

39-GGCCACCACCACCACAGACACAGGCG-59

59-TTAGTGATGGTGCCTCCTACATTTCC-39

57 188

Sertoli cells ABP Forward

Reverse

39-GGAGAAGAGAGACTCTGTGG-59

59-GCTCAAGACCACTTTGACTC-39

57 900

Peritubular cells a-Sm Forward

Reverse

3’-CATCAGGCAGTTCGTAGCTC-59

59-CGATAGAACACGGCATCATC-39

57 524

Leydig cells LHR Forward

Reverse

39-AATACACAACTGTGCATTCAAC-59

59-ATTTGGATGAAGTTCAGAGGTT-39

57 451

Macrophages CD11-b Forward

Reverse

39-GTCAGTGGCATGGTG-59

59-CAAAGCTTCTGCTGT-39

57 524

House keeping gene control b-actin Forward

Reverse

39-AGAGGGAAATCGTGCGTGAC-59

59-GCCGGACTCATCGTACTCCT-39

57 485
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relevant of IgG isotype. This solution was also used for incubation

with primary antibodies. For antigen retrieval, sections were boiled in

6 mol l21 urea for 10 min.19 Thereafter, tissues were stained with the

different primary and secondary antibodies using methods similar to

those described for staining cells above. Negative controls were

included for each specimen using PBS/casein/relevant IgG isotype

instead of the primary antibodies.

Identification of spermatozoa in SACS

The entire agar well (1 ml, with all colonies and cells) was transferred

to a cassette for fixation in formalin (250 ml of 4% formalin) for 24 h.

After fixation, the agar was washed in different concentrations of

alcohol (30%, 50%, 70%, 85%, 95% and 100%), for 30 min in each

concentration.

At the end of the washing process, the agar containing colonies

(around 0.2 ml of loosely agar) was transferred from the cassette into

an Eppendorf tube. One millilitre of saline was added to the tube and was

repeatedly pipetted to destroy the agar. The suspension was transferred to

a slide and left overnight in a laminar flow hood to evaporate the water

while most of the residual agar reverted to powder. Thereafter, the slide

was fixed in cold methanol for 15 min and dried at room temperature

before staining with haematoxylin and eosin to identify cells.

Differentiation of male germ cells to spermatozoa in SACS

Differentiation of tubular cells to spermatozoa was determined in

SACS after 30 days of culture (in 11 different experiments using 32

samples).

Acrosome identification in sperm cells

The presence of acrosomes was confirmed in the spermatozoa that

developed after 30 days of culture in SACS (in four different experi-

ments using four samples).

The presence of acrosomes in spermatozoa was determined using a

fluorescence microscope. Sperm cells isolated from SACS were smeared

on microscope slides at room temperature for 10 min. After air drying,

sperm smears were fixed in cold absolute methanol for 15 min, washed

once in Tris-buffered saline (TBS) and twice in distilled water at 5 min

intervals, air dried, incubated with lectin from Archis hypogaea (pea-

nut)-conjugated FITC (PNA-FITC) (Sigma)20 (25 mg ml21) in Tris-

buffered saline for 30 min, washed with distilled water and mounted

with FluoroGuard Antifade (BioRad Laboratories).

Spermatozoa with green staining over the acrosomal cap were con-

sidered to be cells with intact acrosome.

Microscopy

Samples were observed with an Olympus IX70 microscope (Olympus,

Novato, CA, USA). Digital images and signal intensity charts were

prepared using Image-Pro Plus (Media Cybernetics, Bethesda, MD,

USA), Microsoft Excel and Adobe Photoshop 7.0 software.

Data analysis and statistical evaluation

Each culture condition was tested in 4–6 wells. The plotted data are means

calculated from 3–10 repeats of the experiment. The standard deviation

represents the variability between independent experiments. For quant-

itative data on RNA expression and colony counts, the single data points

obtained in independent experiments from each well with identical culture

conditions were combined to calculate mean6s.d. One-way ANOVA and

Bonferroni’s multiple comparison test were used to estimate statistical

significance, and P values ,0.05 were considered significant.

RESULTS

Isolated tubular cells from 7-day-old and mature (8-week-old) mice

were examined by RT-PCR (Figure 2a) and immunofluores-

cence analysis (for tubular cells from 7-day-old mice; Figure 2b) to

Table 2 Real-time PCR primers

Stage Target Primer Sequence Tm (uC) Size (bp)

Pre-meiotic Vasa Forward

Reverse

5’-GTATTCATGGTGATCGGGAGCAG-3’

5’-CAACAAGAACTGGGCACTTTCCA-3’

60 88

Dazl Forward

Reverse

5’-GCACTCAGTCTTCATCAGCAACCA-3’

5’-CTTCGACACACCAGTTCGATCAGT-39

60 187

OCT-4 Forward

Reverse

5’-GAAGTTGGAGAAGGTGGACCA-3’

5’-GCTTCAGCAGCTTGGCAAA-3’

60 91

C-Kit Forward

Reverse

5’-TGATTGTGCTGGATGATGGATGG-3’

5’-ATCTGCTCTGCGTCTGTTGGT-3’

60 106

GFR-a-1 Forward

Reverse

5’-CATATCAGATGTTTTCCAGCA-3’

5’-TGGTACAGGGGGTGATGTAGG-3’

60 127

CD9 Forward

Reverse

5’-ATGGCTTTGAGTGTTTCCCGCT-39

5’- ATCTTCTGGCTCGCTGGCATT -3’

60 372

a-6-integrin Forward

Reverse

5’-CCGGCCAGTGATTAACATTCT-3’

5’-TGAGCCACACATGGACTTCT-3’

60 62

Meiotic Crem-1 Forward

Reverse

5’-TTCTTTCACGAAGACCCTCA-3’

5’-TGTTAGGTGGTGTCCCTTCT-3’

60 114

LDH Forward

Reverse

5’-GAGTCAGCAGTAAGCTCAACA-3’

5’-ATTTCCAACTCGACACAG-39

60 111

Post- meiotic Protamine Forward

Reverse

5’-ACACAGGCGCTGCTTCGTAA-3’

5’-GTGATGGTGCCTCCACATTTCCT-3’

60 169

SP-10 Forward

Reverse

5’-ATCTGAAGGGTTTGGAGTGAGAG-3’

5’-TGGGTCTTTATCTGGTTGGATCTGCC-3’

60 134

Acrosin Forward

Reverse

5’-TGTCCGTGGTTGCCAGGATAACA-3’

5’-AATCCGGGTACCTGTTGTGAGTT-3’

60 85

House keeping gene control b-actin Forward

Reverse

5’-AGAGGGAAATGTGCGTGAC-3’

5’-CAATAGTGATGACCTGGCCGT-3’

60 99
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characterize the isolated cells and their differentiation stages before

culturing in SACS. Our results showed expression of the pre-meiotic

genes Nanog, Vasa, OCT-4, C-Kit, GFR-a-1, CD9 and a-6-integrin in

tubular cells from 7-day-old mice. Meiotic and post-meiotic gene

expression (Crem-1, LDH and Protamine) could not be observed. In

addition, Sertoli, peritubular, macrophages and Leydig cells were also

present when examined by specific markers (ABP and a-Sm; Figure 2a

and 3e) and CD11-b and LHR (LH receptor) (Figure 3e) before

culture, respectively). Thus, the isolated cells contained only pre-mei-

otic germ cells in addition to somatic cells.

Isolated tubular cells were cultured in the upper layer of SACS

(Figure 1). Distinct colonies in the upper layer were classified accord-

ing to their size, as presented in Figure 3a–c. Colonies of different sizes

were encountered after 14 and 28 days of culture in SACS (Figure 3d).

The number of small and medium colonies was greater than the num-

ber of large colonies after 14 days in SACS. A significant decline in the

number of small (P,0.001) and medium (P,0.05) colonies was

detected after 28 days of culture compared to 14 days in SACS. In

contrast, the number of large colonies increased after 28 days com-

pared to 14 days in SACS (P,0.001) (Figure 3d).

The handpicked colonies did not contain RNA indicating the pres-

ence of Sertoli, peritubular, macrophages or Leydig cells as examined

by PCR analysis using specific markers for those cells (ABP, a-Sm,

CD11-b or LHR, respectively) (Figure 3e).

We examined testicular cells freshly isolated from 7-, 14-, 28- and

40-day-old mice for pre-meiotic (OCT-4, GFR-a-1, C-Kit, CD9 and a-

6-integrin), meiotic (LDH and Crem-1) and post-meiotic (Protamine,

Acrosin and SP-10) markers (Table 3). The results show that meiotic

and post-meiotic genes were expressed in 28- and 40-day-old mice but

not at the earlier time points. Determination of cell type-specific mar-

ker expression in colonies was performed by real-time PCR analysis

(Table 4) of 14- and 30-day cultures (six independent experiments for

each) when each sample run in one to five wells Each data point

represents the results from colonies collected from a single well. In

general, analyses conducted prior to culturing the cells in SACS indi-

cated that only pre-meiotic markers (OCT-4, GFR-a-1, C-Kit, CD9

and a-6-integrin) were present. After 14 and 30 days of culture in

SACS, the expression of the pre-meiotic markers became variable.

This variability existed between different experiments and also

between individual colonies within the same experiment. After 2

weeks of culture, meiotic and post-meiotic markers were occasionally

detectable irrespective of the presence or depletion of pre-meiotic

markers (Table 4). After 30 days of culture, meiotic and post-meiotic

markers were consistently expressed (Table 4). With the exception of

CD9 and OCT-4, the average expression of pre-meiotic markers in

tubular cells cultured in SACS for 14 days and 30 days (respectively)

was significantly reduced (Table 4). These results correspond to the in

vivo situation, with the exception that the expression levels of CD9

decreased with age (Table 3). Meiotic and post-meiotic markers sig-

nificantly increased with time in culture in SACS (except for LDH,

Acrosin and SP-10 after 14 days) (Table 4). This increase in meiotic

and post-meiotic markers in SACS cultures corresponded to the situ-

ation in vivo (Table 3).

In general, the composition of markers did not depend on the size of

the colony. We confirmed the RT-PCR data on germ cell maturation

by immunohistochemical detection of proteins specific for pre-

meiotic, meiotic and post-meiotic germ cells in colonies isolated after

28 days of culture in SACS (Figure 4a and 4b). The protamine signal

was localized differently in the cultured cells compared to cells in the

sections. This difference could be related to the in vitro culture con-

ditions of the cells in the agar system. We confirmed the validity of

these markers in testicular tissue from 7-day-old and 8-week-old mice

(Figure 4c and 4d), and for ‘boule’ staining in our previous study11).

We also confirmed the presence of post-meiotic germ cells by a

series of micrographs depicting progressive stages of differentiating

spermatids up to morphologically normal spermatozoa (Figure 5a

Figure 2 Characterisation of isolated tubular cells before culture in SACS.

Isolated tubular cells were examined by RT-PCR analysis using specific mar-

kers for pre-meiotic (Nanog, Vasa, OCT-4, C-Kit, GFR-a-1, CD9 and a-6-

integrin), meiotic (Crem-1 and LDH) and post-meiotic stages (Protamine)

and also for Sertoli cells (ABP) and peritubular cells (P) (a-Sm) (a).

Immunofluorescence analysis for testicular tubular cells from 7-day-old mice

was used to identify cells positive for pre-meiotic (C-Kit, GFR-a-1, a-6-integ-

rin and CD9), meiotic (Boule, Crem-1 and LDH) and post-meiotic markers

(Protamine) (b). Scale bars510 mm. LDH, lactate dehydrogenase; SACS, Soft

Agar Culture System; SC, Sertoli cell.

Figure 3 Tubular cell colonies development in the SACS. Tubular cells (106 cells

per well) were cultured in the upper layer of the SACS. The lower layer of the SACS

consisted of RPMI containing 20% FCS. The size of the colonies in the upper layer

was evaluated after 14 and 28 days of culture. (a) Colonies were designated as

small (S) when they contained around 50 cells; (b) medium (M) when they

contained around 150 cells; and (c) large (L) when they contained more than

300 cells. (d) The capacity of tubular cells to form S, M or L colonies in SACS was

examined after 14 and 28 days of culture. *P,0.05, ***P,0.001, compared

with 14 days. (e) The expression of markers for Sertoli, peritubular, macrophage

and Leydig cells (ABP, a-Sm, CD11-b and LHR respectively) was examined by

PCR analysis using specific primers for each marker. Scale bars510 mm. BC,

before culture; AC, after culture (colonies); PC, positive control (RNA from the

testis of an 8-week-old mouse). FCS, fetal calf serum; SACS, Soft Agar Culture

System.
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and b). Lectin-staining revealed that the spermatozoa had normal

acrosomes (Figure 5c).

Spermatozoa were present in SACS after 30 days of culture. We were

able to detect spermatozoa in 11 out of 16 independent experiments.

When analysing microscopic smears from 16 wells after 30 days of

SACS, we detected normal-looking spermatozoa in 11 wells. We

counted the number of spermatozoa whenever they were present

and determined an average count of 15.965.7 sperm per well.

DISCUSSION

This study is the first original report revealing the generation of mor-

phologically normal spermatozoa from mouse testicular germ cells in

SACS and confirms our recent studies describing a continuous mat-

uration of pre-meiotic germ cells in such a culture system.11,17 In our

recent study, we have shown that the addition of testicular somatic

cells to the lower phase of the agar system resulted in more extensive

colony formation and improved spermatogenic differentiation of

MACS-enriched GFR-a-1-positive cells in the upper phase.11 This

result was consistent with other studies using conventional culture

systems.5,21 In the present study, we cultivated a crude single cell

suspension of day 7 seminiferous tubules containing all tubular so-

matic cells and pre-meiotic germ cells. These cells reconstituted into

distinct colonies, which expanded during the culture period. Our

results indicate that factors present in FCS affect the growth and pro-

liferation of pre-meiotic germ cells. Indeed, FCS stimulates prolifera-

tion of mouse gonocytes and bovine type A spermatogonia in vitro.4,5

The variability in the detection of markers for pre-meiotic, meiotic

and post-meiotic germ cells reveals that the reconstituted and expand-

ing colonies are heterogeneous and that individual colonies may con-

sist of expanding clones of distinct developmental stages of germ cells.

However, the detection of markers using RT-PCR and immunohisto-

chemistry revealed the continuous maturation of germ cells into post-

meiotic stages. Many colonies contained cells that expressed and

stained for meiosis markers such as Crem-1/Crem-1 and Boule. We

therefore assume that SACS supports the development of differenti-

ating germ cells from pre-meiotic stages into meiosis, a critical step

which is usually blocked under in vitro conditions. Transition into

post-meiotic stages was detected again with high variability after

longer culture periods. In some experiments, the meiotic and

post-meiotic markers were expressed irrespective of the absence or

presence of pre-meiotic markers. In our previous studies, we observed

that the expansion of diploid germ cells is hormone-dependent, while

the meiotic and post-meiotic development appeared to occur inde-

pendently of hormones.11 This observation indicates that expansion of

germ cell colonies occurs without the synchronized development of

less mature germ cells as would usually occur in the seminiferous

epithelium. We assume that the handpicked meiotic and post-meiotic

germ cell colonies represent an expansion of pre-meiotic germ cells

that were present either in small isolated fragments after enzymatic

digestion or re-aggregated when the single-cell suspension was embed-

ded into the agar.

Interestingly, CD9 showed a different expression pattern compared

to other markers. Recently, it was reported that CD9 is present in

spermatids.22 Therefore, it may not be surprising that CD9 expression

increases in SACS with time and supports our finding that spermatids

and mature sperm are generated in vitro. We could not detect CD9 at

the protein level in our system using a polyclonal rabbit anti-mouse

antibody (Santa Cruz Biotechnology). We did also not detect CD9

protein in spermatozoa from mature mice.

Our results revealed that prior to culturing (Figure 3e; BC), the cell

preparation consisted of germ cells and Sertoli cells, peritubular cells,

macrophages and Leydig cells as somatic components. However, the

differentiating colonies in SACS (Figure 3e; AC) appeared to be free of

somatic cells. However, we observed adherent cells in the bottoms of

the culture wells. Thus, FCS components may affect germ cells in SACS

directly or may be acting indirectly by causing adherent cells to pro-

duce factors that affect the germ cells. In our recent study, we prev-

iously showed that the addition of testicular somatic cells to the lower

phase of the agar system resulted in more extensive colony formation

and improved spermatogenic differentiation of MACS-enriched GFR-

a-1-positive cells in the upper phase,11 which was consistent with

other studies using conventional culture systems.5,21

While the post-meiotic progression was already shown in our pre-

vious study using SACS,11 here, we present the first original study on

the detection of spermatozoa using SACS, which confirms a prelim-

inary analysis that was published in a recent review.17 Possible reasons

that we failed to detect sperm in our previous manuscript may include

difficulty in microscopically detecting sperm in the thick agar layer or

the limited number of sperm in the wells. Here, we attempted to

quantify the sperm created in the SACS by analysing smears prepared

Table 3 Expression of spermatogenesis genes in cells from mouse tubular cells of different ages

Pre-meiotic Meiotic Post-meiotic
Age

OCT-4 GFR-a-1 C-Kit CD9 a26-integrin Crem-1 LDH Protamine Acrosin SP-10

7 days AVG 8.0460.16 4.9460.53 12.5961.00 4.7461.00 127.77621.00 0 0 0 0 0

14 days AVG 2.9660.18 2.9560.57 12.6463.70 8.2561.00 63.45610.00 0 0 0 0 0

P *** *** n.s. *** *** n.d. n.d. n.d. n.d. n.d.

28 days AVG 1.6060.46 1.5060.62 6.2360.20 0.9560.50 4.9060.18 35.8365.00 181.6667.00 114.4365.00 35.8365.00 51.10615.00

P *** *** n.s. ** *** *** *** *** * **

40 days AVG 0.7560.37 0.6260.30 2.9361.00 0.3260.20 2.1960.53 60.06610.00 590.00655.00 162.0066.90 54.91620.00 196.71615.00

P *** *** ** *** *** *** *** *** ** ***

Abbreviations: n.d., not determined; n.s., not significant.

Isolated tubular cells from 7-, 14-, 28- and 40-day-old mice were examined by real-time PCR analysis using specific markers for pre-meiotic, meiotic and post-meiotic stages

as described in Table 2.

The values in the table represent the ratio of expression levels of the related marker to b-actin of the same sample (as an internal housekeeping control).

Averages (AVG) of RNA levels from three different experiments using the same age cells are presented. Comparisons between RNA levels from tubular cells from 14-, 28-,

40-day-old mice and 7-day-old mice were performed.

*P,0.05, **P,0.01, ***P,0.001, compared with 7-day-old age.
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from individual wells. We found that the number of normal-looking

sperm was low (about 16 per well per 106 cells seeded), although their

detection was not a rare event (11 out of 16 experiments). Around 6%

of the cells in the colonies expressed acrosin, as detected by immuno-

fluorescent staining, indicating the presence of spermatids. Because a

vast majority of these cells were round, we considered most of these

cells to be round spermatids. Although the efficiency of sperm gen-

eration appears to be low, the SACS system provides an opportunity to

generate a limited number of spermatozoa showing normal sperm

morphology and acrosome development under in vitro conditions.

We are looking for opportunities to improve the efficiency of the

system. In a clinical context, implementing intracytoplasmic sperm

Table 4 Expression of spermatogenesis genes in cells from colonies developed in the SACS

Pre-meiotic Meiotic Post-meiotic

Exp OCT-4 GFR-a-1 C-Kit CD9 a-6-integrin Crem-1 LDH Protamine Acrosin SP-10

Before culture 1 5.38 2.00 12.00 6.04 132.18 0.00 0.00 0.00 0.00 0.00

2 9.77 1.60 10.85 5.47 110.09 0.00 0.00 0.00 0.00 0.00

3 10.19 2.02 12.59 7.15 120.22 0.00 0.00 0.00 0.00 0.00

4 0.07 6.94 3.62 10.45 21.49 0.00 0.00 0.00 0.00 0.00

5 0.00 6.48 27.02 19.24 34.43 0.00 0.00 0.00 0.00 0.00

6 3.75 7.87 29.16 13.60 103.66 0.00 0.00 0.00 0.00 0.00

Avg 4.9064.00 4.9063.00 15.90610.00 10.3065.00 87.01647.00 0.00 0.00 0.00 0.00 0.00

After 14 days 1 0.01 0.25 0.00 79.66 12.01 0.00 0.00 0.00 0.00 0.00

1 0.00 0.14 0.00 12.69 4.27 0.00 0.00 0.00 0.00 0.00

2 0.14 0.00 0.24 22.88 4.49 0.00 0.00 0.00 0.00 0.00

2 0.00 0.07 0.00 12.26 2.27 0.00 0.00 0.00 0.00 0.00

3 0.00 0.07 1.74 24.69 7.60 1.63 4.98 21.94 0.00 0.00

3 0.61 0.42 3.59 15.41 0.90 0.03 0.36 21.20 0.00 0.00

4 0.00 0.00 0.11 18.07 5.80 0.00 0.00 0.00 0.00 0.00

5 0.01 0.00 0.52 7.87 2.69 0.31 0.08 14.99 0.00 0.00

5 0.00 0.00 0.76 6.05 14.28 1.06 0.57 5.01 0.00 0.00

5 0.09 0.01 1.58 20.33 14.78 1.01 0.66 5.34 0.00 0.00

6 0.00 0.25 0.00 0.65 0.17 ND 0.00 0.00 0.00 0.00

6 0.00 0.15 0.00 0.65 0.19 ND 0.00 0.00 0.00 0.00

6 0.00 0.15 0.00 0.54 0.11 ND 0.00 0.00 0.00 0.00

6 0.00 0.08 0.00 0.35 0.16 ND 0.00 0.00 0.00 0.00

6 0.00 0.05 0.00 0.60 0.19 ND 0.00 0.00 0.00 0.00

Avg 0.0660.20 0.1160.10 0.5761.00 14.90619.00 4.7065.00 0.4060.60 0.4061.30 4.6068.00 0.00 0.00

P ** *** *** ns *** ns ns ns ns ns

After 30 days 1 5.72 0.13 0.10 243.28 61.21 12.19 0.42 55.92 264.25 242.29

1 8.43 1.48 6.83 397.77 45.75 15.73 0.76 55.55 248.70 250.29

2 8.43 0.47 5.30 234.67 40.95 16.91 0.41 59.54 334.48 0.00

2 0.00 1.48 0.00 136.79 40.95 0.00 0.00 0.00 0.00 0.00

3 0.45 0.00 1.32 21.64 9.49 2.39 6.43 47.37 0.00 0.00

3 0.00 0.00 1.27 14.78 54.79 2.29 2.40 24.69 0.00 0.00

3 0.00 0.00 1.46 34.20 51.12 6.85 7.98 47.37 0.00 0.00

4 0.00 0.47 0.00 136.79 21.58 0.00 0.00 0.00 0.00 0.00

4 0.00 0.11 0.00 106.98 23.85 0.00 0.00 0.00 0.00 0.00

5 0.00 0.00 2.56 37.68 145.59 19.10 5.76 138.70 0.00 0.00

5 0.00 0.15 1.75 55.94 18.58 2.72 0.00 0.00 0.00 0.00

5 0.00 0.94 1.00 69.83 30.19 9.69 1.46 0.00 0.00 0.00

6 0.00 0.00 0.00 157.11 60.87 0.00 0.00 0.00 0.00 0.00

6 0.00 0.00 0.00 212.97 0.00 0.00 0.00 0.00 0.00 0.00

Avg 1.7063.20 0.3760.50 1.5062.10 132.006109.00 43.20635.00 6.2867.00 1.8362.80 30.70640.00 60.606121.00 35.10689.00

P ns # # # # # # # # # # ns ns ns ns

P ns ns ns $$$ $$ $ ns $ ns ns

Abbreviations: ns, not significant.

Colonies that had developed after 14 or 30 days of culture, as described in Figure 3, were examined for expression of genes related to spermatogonial cells (Oct-4, GFR-a-1, C-

Kit, CD9 and a-6-integrin) and meiotic (LDH and Crem-1) or post-meiotic markers (Protamine, Acrosin and SP-10).

Gene expression was evaluated by real-time PCR analysis using specific primers for each gene (Table 2). The values represent the ratio of expression levels of the related

marker to b-actin within the same sample (as an internal housekeeping gene control).

This table presents the results of six different experiments before culture, six experiments after 14 days of culture in SACS and six experiments after 30 days of culture in

SACS. One to five wells from each experiment were examined using real-time PCR analysis.

Averages (AVG) of RNA levels of the different experiments for specific markers (pre-meiotic, meiotic and post-meiotic) were compared after 14 and 30 days of culture in SACS

with the RNA levels of the examined marker from tubular cells before culture. RNA levels of the different markers were compared between 14 and 30 days of culture in SACS.

*Comparison between the 14-day culture in SACS and before culture.
# Comparison between the 30-day culture in SACS and before culture.
$ Comparison between the 14- and 30-day cultures in SACS.
*,#,$P,0.05. **,# #,$$P,0.01. ***,# # #,$$$P,0.001.
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injection in assisted reproductive techniques renders even low num-

bers of sperm sufficient to achieve fertilisation and pregnancy. The low

efficiency of the sperm generation of SACS is in agreement with other

systems using mouse embryonic stem cells to generate haploid germ

cells (,0.01%).23,24 However, in contrast to the rather complex strat-

egies used to derive sperm from embryonic stem-like cells, the SACS

approach is very simple and none of the ethical concerns that may be

associated with the use of embryonic stem cells can be raised.

We only detected sperm after mounting the agar and fixing the

cells to slides, which will create a significant problem when these

cells are prepared for assisted reproductive technique procedures. A

strategy to isolate sperm from the culture system will be an import-

ant prerequisite for future development of SACS as a basic research

and clinical tool.

Because we have not yet been able to isolate live spermatozoa from

SACS, we could not test their fertilisation abilities. In conclusion, our

study confirms that SACS can be used as a novel in vitro system for the

expansion and maturation of pre-meiotic male germ cells into meiotic

and post-meiotic stages. For the first time, we show in vitro generation

of morphologically normal spermatozoa with intact acrosomes using

SACS. This unique system could lead to new strategies for the study of

spermatogenesis and to new therapies for male infertility.
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Figure 4 Immunofluorescence staining of cells from colonies developed in the SACS and testicular tissue from immature and mature mice. Colonies that developed

within 28 days in culture in SACS were isolated and stained by specific antibodies for different markers of germ cell development by immunofluorescence, including

Vasa, Dazl, C-Kit, GFR-a-1, CD9, a-6-integrin (a), Boule, Crem-1, LDH, Protamine, Acrosin, and the negative control (NC) (b). The presence of Vasa, Dazl, CD9,

GFR-a-1, C-Kit, a-6-integrin, Crem-1, LDH and Protamine, was examined in parallel in testicular tissue from 7-day-old (c) and 8-week-old mice (d). Scale

bars510 mm. LDH, lactate dehydrogenase; SACS, Soft Agar Culture System.
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Figure 5 Differentiation of tubular cells to spermatozoa in SACS. Tubular cells were

cultured in the SACS as described in Figures 1 and 2 and evaluated as described in

the section on ‘Materials and methods’. The presence of differentiated germ cells

(a), including spermatozoa (b), in the SACS was examined under the microscope

after H&E staining. More than 10 spermatozoa were determined in each slide (each

well). The presence (c) of acrosomes was examined by PNA-FITC staining (green-

colour acrosomes). DAPI (blue) staining indicated the heads of the sperm (c). Scale

bars53–5 mm. Arrowheads in the upper panel indicate the developing flagellum.

H&E, haematoxylin and eosin; SACS, Soft Agar Culture System.
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