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Sperm preparation: state-of-the-art—physiological
aspects and application of advanced sperm preparation
methods

Ralf Henkel

For assisted reproduction technologies (ART), numerous techniques were developed to isolate spermatozoa capable of fertilizing

oocytes. While early methodologies only focused on isolating viable, motile spermatozoa, with progress of ART, particularly

intracytoplasmic sperm injection (ICSI), it became clear that these parameters are insufficient for the identification of the most

suitable spermatozoon for fertilization. Conventional sperm preparation techniques, namely, swim-up, density gradient centrifugation

and glass wool filtration, are not efficient enough to produce sperm populations free of DNA damage, because these techniques are not

physiological and not modeled on the stringent sperm selection processes taking place in the female genital tract. These processes only

allow one male germ cell out of tens of millions to fuse with the oocyte. Sites of sperm selection in the female genital tract are the cervix,

uterus, uterotubal junction, oviduct, cumulus oophorus and the zona pellucida. Newer strategies of sperm preparation are founded on:

(i) morphological assessment by means of ‘motile sperm organelle morphological examination (MSOME)’; (ii) electrical charge; and (iii)

molecular binding characteristics of the sperm cell. Whereas separation methods based on electrical charge take advantage of the

sperm’s adherence to a test tube surface or separate in an electrophoresis, molecular binding techniques use Annexin V or hyaluronic

acid (HA) as substrates. Techniques in this category are magnet-activated cell sorting, Annexin V-activated glass wool filtration, flow

cytometry and picked spermatozoa for ICSI (PICSI) from HA-coated dishes and HA-containing media. Future developments may

include Raman microspectrometry, confocal light absorption and scattering spectroscopic microscopy and polarization microscopy.
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INTRODUCTION

At ejaculation, tens of millions of spermatozoa are deposited by the

human male into the upper part of the vagina near the cervical os from

where they start their journey in a competitive race through the female

genital tract to reach and fertilize the oocyte in the ampulla of the

Fallopian tube.1,2 In the human, out of the total number of ejaculated

spermatozoa, only about 10% will enter the cervix, 1% the uterus and

0.1% the Fallopian tube. Eventually, out of the 102–103 spermatozoa

that will reach the cumulus–oocyte complex, usually only one sper-

matozoon will fertilize the egg.1 Hence, it follows that an extremely

stringent selection process of spermatozoa, which is essential for fert-

ilization to produce healthy offspring, is occurring, in which the

female genital tract is involved.

Conventional sperm separation techniques

With the advent of assisted reproduction technologies (ART), sperm

separation strategies from seminal plasma were developed, which are

mainly based on motility, and adhesion and filtration processes

(reviewed in Refs. 3 and 4). While in the early years of ART, the focus

was rather on obtaining motile spermatozoa, in later years, the

focus shifted to the isolation of functional spermatozoa, a requirement

dictated by the observations that functional sperm parameters are

correlated with the results of fertilization in vitro (reviewed in Ref. 5).

Limitations of conventional sperm preparation techniques

By employing conventional sperm preparation strategies for ART,

natural sperm selection processes taking place at various levels of

the female genital tract (Figure 1) are bypassed to varying extents.

In the case of intracytoplasmic sperm injection (ICSI), where a single

spermatozoon is injected into the oocyte, all natural barriers for fert-

ilization are bypassed and even sperm components that normally do

not enter the female gamete are introduced. Thereby, oocyte activa-

tion and embryo development could possibly be impaired.6 Since

spermatozoa with nuclear DNA damage are capable of fertilizing

oocytes,7,8 this, depending on the severity of the damage, may cause

recurrent pregnancy loss.9 Additionally, serious concerns regarding

the health of the offspring were raised.10–12 On the other hand,

embryos deriving from such germ cells can develop to full term.13

Thus, conventional sperm separation techniques show distinct limita-

tions in that they do not necessarily select spermatozoa according to

their functional competence or genetic quality as it is achieved in the

female genital tract.
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Considerations for advanced sperm separation methods

In view of these concerns, scientists and clinicians are increasingly

urged to improve sperm separation techniques in order to select the

most functional spermatozoa for fertilization. Hereby, the emphasis is

rather on the health of the progeny than on achieving pregnancy or

increasing the success rates of ART. In vivo, the sperm selection process

is entirely controlled by the female genital tract, which can be conside-

red to execute some kind of ‘sperm analysis’ in order to identify and

select the ‘fittest’ spermatozoon for fertilization and thereby ensure

that the offspring receives the highest quality genetic material provided

by a male germ cell. However, the question arises of how such selection

for sperm DNA integrity is executed by the female organism. Apart

from a selection based on sperm phenotype and functional characteris-

tics, selection for genomic and molecular integrity appears to occur.

To achieve selection of spermatozoa based on these natural princi-

ples, scientists and clinicians need to understand the processes of

sperm selection occurring in the female genital tract in order to mimic

the chemical and physical mechanisms involved,14 i.e. the principles of

sperm selection should be as close as possible to the natural selection

processes in the female. Therefore, this paper is presented as an update

on the current main sperm separation methods and their problems, as

well as sperm selection in the female genital tract and advanced strate-

gies of sperm preparation for ART based on new insights in the physio-

logical mechanisms of sperm selection in vivo.

SITES OF NATURAL SPERM SELECTION

Sperm selection in the female genital tract is an extremely efficient and

stringent process, which takes place at several levels, the (i) cervix,

(ii) uterus, (iii) uterotubal junction (UTJ), (iv) oviduct, (v) cumulus

oophorus and (vi) zona pellucida (Figure 1). The selection of func-

tional spermatozoa at these different sites is achieved by a variety of

mechanical, biochemical and biophysical mechanisms.

Sperm selection in the cervical mucus

In the human, after ejaculation, the semen forms a loose gel by coagu-

lation. After about 30 min to 1 h, this coagulum is enzymatically

degraded by prostate-specific antigen15 and spermatozoa rapidly

move out of the seminal plasma. Since seminal plasma not only pro-

tects the male germ cell and provides an energy resource, but also, if

exposed to spermatozoa for too long time, decreases their function,

the rapid leaving of spermatozoa from the seminal plasma is essen-

tial.16,17 They then enter the highly hydrated cervical mucus.18 The

degree of hydration determines its penetrability for spermatozoa.19

The micro-architecture of this mucus depends on the stage of the

menstrual cycle. While pre-ovulatory mucus contains linear, flexible

and aligned fibers, ovulatory mucus is composed of floating globules

of mucin aggregates, which explains the rapid transit of spermatozoa

through the cervical mucus.20 Since spermatozoa are trapped and

stored21,22 in this mucus, some authors are in the opinion that in

species like the human where the ejaculate is deposited in the vagina,

the cervical mucus forms a sperm reservoir.23 On the other hand, there

is also strong evidence for such sperm reservoir in the isthmus of the

oviduct in various animal species.

The mechanisms by which sperm selection in the cervical mucus

is taking place are thought to be due to both sperm motility and the abi-

lity of cervical mucus to select spermatozoa based on morphological

Figure 1 Sites of sperm selection in the human female. Estimated numbers of spermatozoa in the respective sections of the female genital tract are given in brackets.

Soon after deposition in the vagina, spermatozoa move out of the seminal plasma and enter the highly hydrated cervical mucus where sperm selection for morphology

and motility takes place. Spermatozoa that are selected here are characterized by a low plasma membrane content of PUFA. Subsequently, spermatozoa are transported

through the uterus where male germ cells are selected for motility and timely capacitation. Dysfunctional spermatozoa are eliminated. After passing the uterotubal

junction, which has, in contrast to numerous animal species, no significant function in man, spermatozoa enter the isthmus of the fallopian tube. In the isthmus,

spermatozoa can be stored for up to 5 days. In the isthmus and the cumulus, spermatozoa are selected for capacitation, thermo- and chemotaxis-responsiveness and

DNA integrity. Finally, after passing through the cumulus, spermatozoa bind to the zona pellucida where another morphological selection takes place. Moreover, male

germ cells are further selected for zona-binding ability and DNA integrity (figure modified with permission from Ref.180). PUFA, polyunsaturated fatty acid.
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criteria.24 However, other factors, including the mixing of the ejaculate

with cervical mucus, as well as vaginal and uterine contractions, should

be considered.25 Apparently, this morphological selection excludes sper-

matozoa bearing cytoplasmic droplets,26,27 which are regarded as abnor-

mal features associated with damaged cellular function.28,29 However,

recent observations revealed that cytoplasmic droplets may be the site of

osmotic volume regulation and thus essential for human sperm func-

tion.30,31 A regulatory volume decrease of the male germ cell is linked to

good motility30 and failure of the regulatory volume decrease will result

in hindrance of mucus penetration.32 Thus, regulatory volume decrease

might be an essential mechanism for spermatozoa to adapt their mor-

phological appearance in order to fit through the mucin mesh of the

cervical mucus. It might also be a function to attain or maintain pro-

gressive motility, which is necessary to pass through cervical mucus.

Chakroun-Feki et al.33 revealed that human cervical mucus selects a

subpopulation of spermatozoa with cholesterol-rich plasma mem-

branes and speculate that these spermatozoa are more mature. This

assumption corroborates data by Ollero et al.34 who showed a decrease

in the lipid content of Percoll-separated sperm. Thus, female selection

of spermatozoa with a low content of polyunsaturated fatty acids

would simply be a selection of good quality sperm, because excess

polyunsaturated fatty acid triggers mitochondrial reactive oxygen spe-

cies (ROS) production,35 which can cause functional damage to the

sperm cell.36,37 However, the mechanism for this selection is currently

unknown.

Uterus. Mechanisms involved in sperm selection within the uterus are

being debated. A relatively new theory by Velando et al.38 considers

leukocytes in cervical mucus and the uterus as being part of a selection

mechanism, which functional spermatozoa have to overcome. These

leukocytes produce elevated levels of ROS that would not only damage

spermatozoa, but also trigger an increase in membrane permeability to

ions essential for capacitation, chemotaxis and hyperactivated mot-

ility.39,40 These processes should not occur in the uterus.

Due to this oxidative stress caused by leukocytes, functional sper-

matozoa are compelled to leave this hostile environment in a short

time. In fact, human spermatozoa have been detected in the Fallopian

tubes 5–10 min after intercourse.41 This rapid movement of spermato-

zoa is assisted by myometrial contractions during the late follicular

phase.42 Once spermatozoa move out of the protective seminal

plasma, they progressively lose the protection by scavengers for ROS

and decapacitation factors such as spermine or glycodelin-S,43,44

which are abundant in seminal fluid. Considering that the uterus is

part of the common mucosal immune system, spermatozoa have to

leave or pass through these environments as soon as possible.

Utero-Tubal Junction. In many animal species, another major reduction

in the number of spermatozoa progressing towards the oocyte occurs at

the UTJ. Yet, compared with numerous animal species like cows or

rabbits, where the entrance to the UTJ is characterized by a tortuous

and very narrow lumen with large and small mucosal folds lined by

epithelial cells with prominent cilia, in the human, sperm passage

through the UTJ is rather simple (reviewed in Ref. 45). Therefore, the

UTJ does not play a major role for sperm separation in man.

Oviductal isthmus. For those spermatozoa that reach the Fallopian

tube, the environment changes from hostility in the vagina, cervix

and uterus, where they attract leukocytes and need protection from

maternal immune-recognition, to one that preserves and enhances

sperm viability and motility, and stimulates capacitation.46

In pigs, cows or sheep, experiments have provided evidence that

spermatozoa become trapped in the oviductal isthmus by binding to

epithelial cells.47,48 Therefore, this part of the oviduct forms a sperm

reservoir to ensure sperm survival until ovulation. However, man differs

from these animal species in terms of the timing of coitus and the site

of the deposition of the ejaculate.49 Therefore, the body of evidence

is markedly weaker. However, a sperm reservoir has also been suggest-

ed in man as spermatozoa bind to epithelial cells of endosalpingeal

explants.50 Due to the direct contact of the spermatozoa to oviductal

cells, their functional lifespan is thought to be prolonged and capacita-

tion delayed for about 24 h.51 Once ovulation occurs, spermatozoa are

released and capacitation and hyperactivation are triggered. This is

thought to assist sperm detachment from the epithelium by providing

the necessary force.52,53 A gradual release of spermatozoa from the res-

ervoir helps prevent polyspermy by limiting the number of spermatozoa

available at the fertilization site.54 On the other hand, Williams et al.1 did

not find evidence for the human isthmus being a sperm reservoir.

In animal species, sperm binding to the oviductal epithelium

appears to be mediated by fucose and galactose via acidic heparin-

binding proteins in the acrosomal region.55,56 The epithelial receptors

for the bovine seminal plasma proteins are Annexins containing

fucose57 and homologues of bovine seminal plasma proteins have

been found in man as well as mice.58 To date, no consensus has been

reached on how human sperm bind to the isthmic epithelium. How-

ever, there are indications that the adhesion sequence Arg–Gly–Asp

(RGD) on sperm surface proteins might be involved.59

Very recent investigations in the bull by Gualtieri et al.60,61 revealed

that the oxidation and reduction of sulphhydryl groups of sperm

surface proteins reversibly modulate sperm adhesion to the oviductal

epithelium as well as capacitation. If this kind of regulation would also

be the case in the human, one has to consider that sperm binding

to and release from the epithelium as well as triggering the events

involved are dependent on a finely regulated redox status in the isth-

mus. Such changes in the redox status can occur quickly. If, however,

limited amounts of ROS are produced in the oviduct, one must con-

sider that these ROS (i) may modulate capacitation and hyperactiva-

tion40 and (ii) might be detrimental, thus leading to the elimination of

sperm. In fact, sperm attached to oviductal epithelial cells showed less

abnormalities in the chromatin structure than those not attached.62

Up to now, two complementary mechanisms for sperm orientation

in the oviduct have been revealed. A thermotactic mechanism is long-

ranged and regulated through an intracellular inositol-triphosphate

receptor Ca21-canal,63 by which capacitated spermatozoa are released

from the sperm storage site and guided towards the ampulla, where a

2 uC lower temperature prevails during ovulation.64,65 Whether ther-

motactic responsiveness of male germ cells plays a role in selective

accumulation of spermatozoa remains to be demonstrated. Close

to the oocyte, a second, short-range chemotaxis mechanism exists,

which leads to recruitment of a population of capacitated spermato-

zoa.66,67 Progesterone68 and nitric oxide69 may act as chemoattrac-

tants. Sanchez et al.70 showed that for the chemotactic response a

critical physiological level of ROS is essential. Spermatozoa that fail

to be guided by chemoattractants would then not proceed towards the

oocyte. Thus, a responsiveness of the male germ cell to the chemoat-

tractant could then be seen as an essential sperm function.

Cumulus oophorus. Once spermatozoa leave the isthmus, they travel

into the ampulla and contact the cumulus oocyte complex, a process

which is mediated by chemoattractants derived from follicular fluid,

cumulus cells and the oocyte.71,72 Cumulus cells convert glycodelin-A
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and -F into cumulus-specific glycodelin-C73 and thereby remove the

inhibitory activities of glycodelin-A and -F and enhance sperm–zona

binding.74 The cumulus matrix has viscoelastic properties and can only

be penetrated by hyperactivated spermatozoa, which is one requirement

for penetration of the cumulus and zona pellucida.75,76 Additionally,

cumulus-penetrated spermatozoa also show better morphology.77

A major component of the extracellular matrix of the cumulus is the

linear polysaccharide hyaluronan (hyaluronic acid, HA),78 which is

composed of alternating repeats of D-glucuronic and N-acetyl-D-

glucosamine residues.79 Hyaluronan forms a complex with a glycode-

lin interacting protein, which retains and concentrates glycodelin-C,

which is essential for sperm–zona binding.80 In the human, it has been

shown that during the final maturation steps of spermatogenesis,

plasma membrane remodeling takes place that renders the male germ

cell able to bind to hyaluronan and the zona pellucida.81,82 These data

are supported by the presence of a HA receptor in human spermato-

zoa83 of which at least three hyaluronan binding proteins are involved

in sperm maturation, acrosome reaction, motility, hyaluronidase

activity and sperm–zona binding.84–86

Zona pellucida. The last barrier before sperm entry into the oocyte is

the zona pellucida, which may be a final check-point for rejecting

inadequate spermatozoa. Menkveld et al.87 and Liu and Baker88 found

independently that the human zona pellucida has a selective capacity

to bind morphologically normal spermatozoa. Thus, the zona pellu-

cida represents the third place after cervical mucus and the cumulus

where selection for morphological features takes place. It may also

indicate the importance of normal sperm morphology as a parameter

as it correlates very well with numerous sperm functions including

acrosome reaction and normal DNA integrity.89,90 Patients with dis-

ordered zona-induced acrosome reaction show very low or no fert-

ilization in in vitro fertilization (IVF) but good fertilization and

pregnancy rates after ICSI.91

ADVANCED STRATEGIES OF SPERM SELECTION

Advanced strategies of sperm selection are defined as being based on

sophisticated principles that employ physiological selection proce-

dures. These principles are founded either on a more stringent assess-

ment of sperm morphology, which is a sperm characteristic selected

for at three different sites in the female (Figure 1), or on molecular

characteristics of mature spermatozoa, which are associated with

proper cellular function and genomic integrity. Currently, advanced

selection procedures can be divided into three groups, on the basis of

(i) sophisticated morphological assessment; (ii) electrical charge; and

(iii) molecular binding. The latter two principles in part mimic female

selection mechanisms.

Selection based on morphology

Normal sperm morphology evaluated after fixation on the basis of

strict criteria92 at 31000 magnification is regarded as a good pre-

dictor of fertilization success in vitro.93 For ICSI, however, the

embryologist selects the most normal (least abnormal)-looking

spermatozoon on the basis of light microscopy at magnifications

of 3400 in unfixed, unstained, wet sperm preparations. Success of

assisted reproduction is also dependent on the ultramorphology of

the spermatozoon that is taken for injection. Therefore, morpho-

logical discrimination by means of light microscopy is not good

enough as subtle malformations, particularly DNA damage and

chromosomal aberrations,94,95 cannot be detected and defective

spermatozoa might be accepted for normal ICSI procedure.96,97

Ryu et al.98 highlighted the relationship between sperm morphology

and genetic abnormalities by showing significantly higher frequen-

cies of aneuploidy in infertile patients.

Motile sperm organelle morphological examination (MSOME). Since

light microscopically invisible damage may be the reason that chromo-

somal or DNA damage in spermatozoa can be transferred to the pro-

geny,99 a method that evaluates sperm morphology at higher, digital

magnification (36300) using Nomarski interference contrast has been

developed.100 With MSOME, the morphological status of the acro-

some, post-acrosomal lamina, neck, mitochondria, flagellum and the

sperm nucleus is examined. For the latter, the shape, as well as the

presence and size of vacuoles, is observed. Since MSOME identifies

objects undetectable by light microscopy, such as nuclear vacuoles,

which are indicative of abnormal chromatin packaging,101 this

method is much more stringent than the evaluation of sperm mor-

phology according to strict criteria.102

MSOME is now included into ICSI protocols in an increasing num-

ber of centers for ART. The combination of MSOME and ICSI has

been named intracytoplasmic morphologically selected sperm injec-

tion (IMSI).103 Compared with standard ICSI procedures, IMSI has

been shown not only to increase fertilization rates,100 but also

implantation and pregnancy rates.103,104 These initial results were

confirmed in a recent meta-analysis.105 Yet, Balaban et al.106 rather

restrict the beneficial effects of IMSI to selected male factor patients.

The beneficial effects of IMSI also appear to be reflected in lower

aneuploidy and miscarriage rates.105,107

However, whereas no differences were observed when comparing

the quality of day 2 embryos from ICSI and IMSI,108 such differences

were evident when blastocysts were examined.109 This difference

between these two studies highlights early and late paternal effects

on the embryo. Previously, it has been shown that spermatozoa with

abnormal genetic material are able to fertilize oocytes,7 thereby posing

the risk that such damaged genomes can be manifested in the germ

line.110,111 Nevertheless, the oocyte has the ability to repair damages

transferred to the oocyte by the spermatozoon. Whereas cytoplasmic

defects can be repaired by the oocyte immediately after gamete fusion,

sperm nuclear deficiencies will only be detected after the paternal

genome is switched on at the eight-cell stage.112

Concerns have been raised about IMSI because it is expensive and

takes with 1.5–5 h113 longer than ICSI. Since the normal ICSI proced-

ure is performed at 37 uC, the extended exposure of spermatozoa to

this temperature might pose a risk to the male germ cell. Peer et al.114

exposed human spermatozoa to different temperatures for extended

times and found that sperm morphology deteriorated significantly

after incubation for 2 h at 37 uC, which was not the case after incuba-

tion at 21 uC. Therefore, the authors recommended the performance

of IMSI at 21 uC.

Electrical charge

During epididymal maturation, human spermatozoa acquire three

forms of the highly sialylated and negatively charged, lipid-anchored

gp20/CD52 glycopolypeptides115 via epididymosomes and prosta-

somes.116 The level of expression of this protein on spermatozoa

appears to be positively correlated with the percentage of normal

morphological forms in the same sperm cell as well as with the state

of sperm capacitation and status of male fertility.117,118 Based on

this negative electrical charge, it is possible to separate spermatozoa

by means of the so-called (i) zeta potential and (ii) electrophoretic

technique.

Natural sperm selection and advanced techniques of sperm preparation
R Henkel

263

Asian Journal of Andrology



Zeta potential. The electrical charge (from 216 mV to 220 mV) of the

sperm plasma membrane is called electrokinetic potential or ‘zeta

potential’119 and must not be confused with the membrane potential.

While the latter is the electrical potential difference between the inside

and outside of a cell membrane, the ‘zeta potential’ is the electrical

potential at the slipping plane of a moved particle (here the sperm cell)

in suspension away from the interface. Owing to their negative charge,

spermatozoa adhere to glass surfaces when a culture medium is not

supplemented with serum or albumin. Despite its own negative

charge, albumin binds to both anions and kations, and therefore,

neutralize this charge of the ‘zeta potential’.

The zeta method is a simple method for the isolation of mature

spermatozoa by allowing them to adhere to the surface of a positively

charged test tube.120 This procedure can remove charged cells from a

suspension so that the resulting population has better quality in terms

of the ability of spermatozoa to undergo hyperactivation, normal

DNA integrity, normal morphology and normal chromatin con-

densation.120,121 The method has been shown to select acrosome-

and DNA-intact spermatozoa from populations obtained after

cryopreservation122 and increase fertilization rate after ICSI.123

Despite the low cost and the improved qualities of the selected

population, the zeta method recovers only very low number of sper-

matozoa.120 Since X-bearing spermatozoa exhibit a higher net nega-

tive charge than Y-bearing spermatozoa, there might be a bias for the

selection of X-bearing spermatozoa.119,124,125 Furthermore, since

changes in the surface charge taking place as spermatozoa become

capacitated are resulting in a decrease of sialylated surface pro-

teins,117,126 the method has to be performed immediately after sperm

separation from seminal plasma.

Electrophoresis. Based on the same principle, Ainsworth et al.127

developed an electrophoretic method to separate mature spermatozoa

from immature, dysfunctional male germ cells and leukocytes, by

using a microflow cell. With this method, functional spermatozoa

penetrate through a polycarbonate membrane with 5 mm pores, large

enough to permit the passage of spermatozoa, but small enough to

exclude larger cells including leukocytes that commonly contaminate

ejaculates. Separation resulted in the isolation of highly motile sper-

matozoa of good morphology and DNA integrity. This method was

also effective in isolating high quality spermatozoa from cryopreserved

or testicular biopsy material at an average recovery rate of about 20%

subsequently used for ICSI and resulting in normal delivery.128

Comparison of density–gradient centrifugation of spermatozoa

using the ISolateTM medium with the electrophoretic method

revealed comparable results of sperm recovery, motility and DNA

damage.129 Recent investigations by Aitken et al.130 and Ainsworth

et al.131 demonstrated that electrophoretically separated human sper-

matozoa are free of oxidative stress, capacitate and bind to zona pel-

lucida normally. The technique does not result in a skewing of the ratio

of X- and Y-bearing germ cells as suspected by others.120 These results

might make the electrophoretic method useful for both IVF and ICSI.

However, equipment is more expensive and not every ART unit may

be able to afford the method.

Molecular binding

Numerous studies have shown that certain sperm surface molecules

not only change during epididymal sperm maturation, but are also

associated with normal sperm function. For identifying spermatozoa

capable of fertilizing human oocytes, two methods base on molecular

binding are currently used, sperm binding to annexin V and HA.

Annexin V. Annexin V is a protein of about 35 kDa132 that binds to the

negatively charged phosphatidyl serine (PS), which is accumulated on

the inner leaflet of the plasma membrane in viable cells. As an early

sign of apoptosis, PS is translocated from the inner to the outer leaflet

of the plasma membrane,133 indicating the sperm cell’s inappropriate-

ness for fertilization. Considering that PS can be detected with

Annexin V on ejaculated, viable spermatozoa, Sakkas et al.134 called

this ‘abortive apoptosis’. On the other hand, PS also translocates dur-

ing the processes of capacitation and acrosome reaction.135 Sperm

translocation of PS to the outer-membrane is positively correlated

with nuclear DNA damage,136 which reflects fertilization and preg-

nancy failure in assisted reproduction.7,137,138 In the light of this asso-

ciation, new methods to isolate spermatozoa that do not show PS on

the outer membrane leaflet (non-apoptotic or Annexin V-negative)

have been developed.

Magnetic beads. The magnet-activated (or magnetic-bead activated)

cell sorting technique was initially developed by the Glander group

in Leipzig, Germany.139,140 Annexin V-conjugated paramagnetic

microbeads are used to eliminate apoptotic spermatozoa from a sperm

suspension by allowing beads to bind to them followed by their sub-

sequent removal by an external magnetic field. The non-apoptotic

(Annexin V-negative) germ cells remain unlabelled and pass through

the selection column. Magnet-activated cell sorting not only removes

apoptotic spermatozoa efficiently from sperm suspensions,141 but also

results in a fraction of spermatozoa with a significantly higher per-

centage with normal morphology, non-disturbed mitochondrial

membrane potential, and less DNA damage.142,143

Clinical trials have shown higher cleavage and pregnancy rates after

ICSI with magnet-activated cell sorting-selected spermatozoa than by

density–gradient centrifugation in men with oligo-, astheno- and ter-

atozoospermia.144 Recent reports145,146 of full-term pregnancies reveal

this novel technique as safe and reliable for use in an assisted repro-

duction programme. Yet, these obvious advantages have to be

balanced against the relatively high cost of the equipment, which

might make this method unaffordable for smaller centers and less

wealthy patients.

Annexin V-activated glass wool filtration. Glass wool filtration is a

sperm selection method that has been known for more than three

decades. Annexin-V-activated glass wool filtration is based on the

principles of glass wool filtration (for review, see Ref. 3) and the

affinity of Annexin V for PS. Scientists of the Glander group have

chemically linked Annexin V to glass fibers.147 The method resulted

in the selection of spermatozoa of high motility and normal mito-

chondrial membrane potential. Considering that this method is

easy to perform and relatively inexpensive, it might gain some

importance for isolating functional spermatozoa for IVF and

ICSI. However, as it is still at an experimental stage, clinical data

are still unavailable. Therefore, a definite recommendation for its

use cannot be given yet.

Flow cytometric cell sorting. The flow cytometric cell sorting tech-

nique developed by Hoogendijk et al.148 utilizes fluorescently-

labeled Annexin V to mark PS-positive spermatozoa is highly

effective in separating a subpopulation of spermatozoa with normal

morphology. This technique is experimental and clinical data

remain to be generated. However, as flow cytometers may not be

affordable for many assisted reproduction units, particularly those

in poor countries.
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HA. Mature human sperm membranes expose HA receptors.83 While

early studies indicated stimulation of sperm motility149 and acrosome

reaction150 by hyaluronan, recent reports have revealed that the per-

centage of sperm bound to HA reflects their maturational status

and function.81 This observation can be used for fertility diagnosis

as well as for the selection of functional spermatozoa for ICSI.151

Hyaluronan-bound spermatozoa exhibit lower percentages of

chromosomal aneuploidies and DNA damage and show significantly

improved general and nuclear morphology, as well as high embryo

quality resulting from ICSI.152–155 Despite these positive results van

den Berg et al.156 found no significant differences in fertilization rates

and zygote scores by hyaluronan-bound and non-hyaluronan-bound

spermatozoa in their controversially received157 study.

Although spermatozoa bound to hyaluronan had lower DNA

damage and better chromatin condensation as compared to the con-

trols, the HA-binding assay failed to predict fertilization, pregnancy

and baby take-home rate after IVF and ICSI, thus sperm–hyaluronan

binding had no predictive value in a clinical test.158,159 Petersen

et al.160 found no differences in the percentages of normal spermato-

zoa in the hyaluronan-bound and non-hyaluronan-bound fractions.

This failure of the hyaluronan binding test to predict fertility indicates

only a limited role of isolated hyaluronan in sperm selection because

both components of the cumulus, the extracellular matrix with its

hyaluronan content, and the cumulus cells with their conversion of

glycodelin-A and -F into glycodelin-C, contribute to the male germ

cells’ ability to penetrate the cumulus and modulate sperm func-

tions.44,74,77 Yet, since implantation and pregnancy rates after ICSI

did not improve when HA selected spermatozoa were used,153 the

clinical relevance of sperm selection by means of their binding ability

to hyaluronan is questionable.161 The reason for this failure of hyalur-

onan-separated spermatozoa to achieve higher impantation rates

might be due to the nature of the method because other factors such

as glycodelin-C are missing.

To date, two methods for HA binding are in use, namely, the picked

spermatozoa for ICSI (PICSI) dish (hyaluronan-coated chamber) and

a hyaluronan-containing medium. Both methods are ready to use

systems that ate commercially available and have received official

recognition for conformity with health and safety requirements in

the EU and the United States.154

PICSI dish. Principally, the PICSI dish is a Petri dish that has spots of

immobilized HA on it (MidAtlantic Diagnostic, Mount Laurel, NJ,

USA). Washed or density gradient-prepared spermatozoa suspensions

are placed on top of these spots of HA and incubated for 15 min at

37 uC. Subsequently, the freely moving spermatozoa are removed by

gently rinsing the HA droplet and removing the non-bound sperm.

Finally, the bound spermatozoa can be picked (P) with an ICSI pipette

(hence PICSI).152

Hyaluronan-containing medium. The alternative to the PICSI dish is a

viscous medium containing HA (Sperm Slow; MediCult, Jyllinge,

Denmark). Here, a 5-ml droplet of density gradient-prepared sper-

matozoa is connected with a pipette tip to a 5-ml droplet of Sperm

Slow medium by dragging the suspension into contact and incubated

for 15 min at 37 uC under oil. Afterwards, spermatozoa bound to HA

at the interface of the two droplets are selected with an ICSI pipette.154

Zona pellucida binding. Recently, zona pellucida-bound spermatozoa

were used for ICSI.162–164 Although no difference in fertilization

rate was observed compared to the control (normal ICSI), the use of

zona-bound spermatozoa resulted in significantly higher quality of

embryos, implantation and pregnancy rates suggesting that zona pel-

lucida-bound spermatozoa are of superior quality. These data look

promising. Yet, further results have to be reported before a definite

recommendation in favor of this method can be made for routine

sperm preparation.

FUTURE DEVELOPMENT OF SPERM PREPARATION

TECHNIQUES

As sperm selection by a fertile female usually permits only those male

germ cells that exhibit normal nuclear DNA integrity access to the

oocyte, any artificial selection method mimicking the biological situ-

ation should monitor this essential parameter. However, all currently

employed methods to determine DNA damage (TUNEL assay, SCSA,

COMET assay, Halosperm assay, etc.) are invasive and therefore con-

sumptive, meaning that the sperm cell that is being analyzed is used for

the assay and consequently unavailable for fertilization. Nevertheless,

in order to obtain healthy progeny, it is crucial that the female organ-

ism is able to select spermatozoa with undamaged DNA. However,

currently, we can only speculate how this discrimination is achieved in

the female reproductive tract. Since the female is unable to ‘analyze’

the quality of the sperm DNA directly, we can only reason that the

stringent selection processes taking place at different levels of the

sperm cell’s way through the female genital tract are somehow assoc-

iated with the DNA quality via other sperm parameters.

Clinical application of novel, more physiological sperm selection

techniques demands that such techniques are non-invasive, safe,

highly discriminative and relatively easy to perform. Moreover, it is

imperative for any new method that sperm functions are maintained

as much as possible and not compromised. These requirements might

come at the cost of relatively expensive equipment or procedures.

Among the cheaper methods is the utilization of cumulus cells in a

Pasteur pipette165 or zonae pellucidae of immature oocytes162–164 as

there are no differences in normal sperm morphology and DNA integ-

rity of zona-bound sperm between mature and immature oocytes.89

Franken and Bastiaan165 showed that the percentages of cells with

normal morphology, good quality chromatin condensation and

tightly zona-bound spermatozoa were significantly higher in the

cumulus-penetrated fraction of spermatozoa and speculate that this

might be a possible means for the selection of functional spermatozoa

for ART. However, for both approaches, the availability of cumuli and

zonae pellucidae might be a problem, which would limit the applic-

ability of the methods.

Recently developed techniques that are non-invasive and therefore

have the potential to be used for isolation of potentially fertilizing

spermatozoa are more sophisticated and more expensive than those

that are currently used in ART and include Raman microspectrome-

try, confocal light absorption and scattering spectroscopic microscopy

and polarization microscopy. At present, all of these are only in experi-

mental stages and specific recommendations for routine application

cannot be made.

Raman microspectrometry

Raman microspectrometry can provide detailed information about

the efficiency of DNA packaging at the single-cell level by exam-

ining discrete laser scattering spectra, and can thus identify DNA-

compromised cells. It has already been used successfully to discrim-

inate, classify and diagnose malignancies and various tumors166–168

without having adverse effect on the cells analyzed.169 Huser and

co-workers170 have suggested Raman microspectrometry to be a

valuable tool in assessing sperm quality for assisted reproduction.
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Confocal light absorption and scattering spectroscopic microscopy

This method is a combination of confocal microscopy and the prin-

ciples of light-scattering spectroscopy.171 It provides excellent and

highly specific images of subcellular structures at submicrometer levels

beyond the diffraction limit of light.171,172 Itzkan et al.171 have been

able to discriminate between apoptotic and non-apoptotic human

bronchial epithelial cells.

Polarization microscopy

With the aim of obtaining sperm images closer in resolution to those

obtained by electron microscopy, Baccetti173 has applied polarization

microscopy to identify functional spermatozoa for use in ICSI. In this

approach, the birefringence (double refraction) of light caused by the

anisotropic properties of the compact texture of the sperm nucleus,

acrosome and flagella permits the evaluation of the organelle structure

of the male germ cell. Gianaroli et al.174,175 used the technique to

distinguish acrosome-reacted from non-reacted spermatozoa.

However, a report by Petersen et al.176 challenges this view. An asso-

ciation of sperm head birefringence with DNA damage is also ques-

tionable.176–178 Nevertheless, Gianaroli et al.179 report significantly

higher implantation, clinical pregnancy and ongoing pregnancy rates.

CONCLUSIONS

Despite significant improvements in human sperm preparation meth-

ods during recent years, our knowledge about the physiological sperm

selection processes in the female reproductive tract is still fragmentary,

as can be noticed from contradictory reports of the effect of certain

selection methods on sperm function and IVF/ICSI results. If the

physiological processes could be mimicked, the number of spermato-

zoa used for insemination in intrauterine insemination or IVF would

not only be drastically reduced, but the quality of spermatozoa that

would be used for ICSI would increase. Additionally, success rates of

assisted reproduction would improve as good quality spermatozoa

bearing a genome of highest integrity would be selected.

Nevertheless, no simple solution to this dilemma is available, and

certainly, the efforts in minimizing mutagenic or lethal effects of DNA

damage will not come cheap, which might also be a problem, particu-

larly in developing countries. Human reproductive scientists and clin-

icians are not only doing their utmost to assist infertile couples to

fulfill their wish for a child, as the World Health Organization recog-

nizes infertility as disease, but have also the duty to minimize the risks

of ART for both the parents and progeny. Consequently, scientists

have to understand the fertilization process better and search for

the most ‘physiological’ methods for human sperm selection.

Nevertheless, despite progress that has been made to select and iden-

tify the most suitable spermatozoa for human-assisted reproduction,

most of the new techniques are large-scaled and therefore expensive.

With respect to future developments, more confirming and expanded

data remain to be seen as only preliminary results have been presented

by individual groups.
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