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Prostate cancer (PCa) results from a multistep process. This process includes initiation, which occurs through various aging events and

multiple insults (such as chronic infection, inflammation and genetic instability through reactive oxygen species causing DNA

double-strand breaks), followed by a multistep process of progression. These steps include several genetic and epigenetic alterations,

as well as alterations to the chromatin structure, which occur in response to the carcinogenic stress-related events that sustain

proliferative signaling. Events such as evading growth suppressors, resisting cell death, enabling replicative immortality, inducing

angiogenesis, and activating invasion and metastasis are readily observed. In addition, in conjunction with these critical drivers of

carcinogenesis, other factors related to the etiopathogenesis of PCa, involving energy metabolism and evasion of the immune

surveillance system, appear to be involved. In addition, when cancer spread and metastasis occur, the ‘tumor microenvironment’ in the

bone of PCa patients may provide a way to sustain dormancy or senescence and eventually establish a ‘seed and soil’ site where PCa

proliferation and growth may occur over time. When PCa is initiated and progression ensues, significant alterations in nuclear size,

shape and heterochromatin (DNA transcription) organization are found, and key nuclear transcriptional and structural proteins, as well

as multiple nuclear bodies can lead to precancerous and malignant changes. These series of cellular and tissue-related

malignancy-associated events can be quantified to assess disease progression and management.
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NUCLEAR MORPHOMETRY, NUCLEOMICS AND PROSTATE

CANCER PROGRESSION

Prostate cancer (PCa) is the second most common cause of cancer-

specific mortality among men in the United States, with an anticipated

217 730 newly diagnosed cases and 32 050 deaths in 2010.1 It has been

estimated that up to 50% of screening-detected PCa cases would never

have been diagnosed in the absence of screening. However, the benefits

of PCa screening remain unclear; the burdens of overdiagnosis and

overtreatment associated with early detection are well known.2–5 Even

with major improvements in diagnosis and treatment modalities for

PCa, we still fail to identify and successfully treat the aggressive malig-

nancies that lead to death. Hence, the remaining clinical dilemmas for

the management of PCa patients are the early diagnostic features of

those patients requiring definitive treatment and the identification of

aggressive PCa that requires additional therapy after definitive treat-

ment to prevent recurrence and progression to death.6–8

The nucleus is uniquely organized, with highly ordered compart-

mentalization (including chromatin (euchromatin and heterochro-

matin), several nuclear bodies, and nucleosomes). This ordered

nuclear structure is instrumental to the maintenance of normal cel-

lular functions such as cell division, proliferation, transcription and

translation as well as to the cellular response to stress and disease.9–14

These complex and ordered cellular processes involve the regulation of

RNA, DNA, histone protein modification, nuclear membrane pro-

teins and nuclear matrix proteins which are important to the

maintenance of chromatin structure, nuclear body dynamics, and

transcription/translation cellular functions. However, when cancer

is initiated, alterations in nuclear size, shape, heterochromatin

(DNA transcription) organization, key nuclear proteins and nuclear

bodies occur owing to changes in key molecular and regulatory

pathways, and these alterations lead to precancerous and malignant

changes. For example, once cancer is initiated through various insults

(such as chronic infection, inflammation, aging and genetic instability

owing to DNA double-strand breaks (DSBs)), there is a multistep

process of progression, which may include several genetic, epigenetic

and nuclear structural alterations that occur in response to the ensuing

carcinogenic stress-related events.6–14 One critical stressful event in

carcinogenesis is the occurrence of DNA DSBs and the resultant repair

process. DSBs arise through replication errors and exposure to exo-

genous and endogenous genotoxic agents such as ionizing radiation

and reactive oxygen species, respectively.15 Genetic instability in can-

cer occurs in the form of somatic mutations, deletions, translocations,

amplifications, copy number variations or single nucleotide poly-

morphisms, which are quantifiable as balanced alterations (approxi-

mately the same amount of chromosomal material observed after the

event) or unbalanced alterations (there is a major loss and/or gain of
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chromosomal material). In the latter case, such changes can result in

major alterations in nuclear bodies (such as number, location or struc-

ture), chromosome structure and organization, and changes to both of

their normal locations.16–18

Similar to other cancers, the six hallmarks of cancer occur in PCa

development. These hallmarks include sustained proliferative signal-

ing, evasion of growth suppressors, resistance to cell death, replicative

immortality, induction of angiogenesis, and activation of invasion

and metastasis.14 The initiation events for PCa include aging, diet,

inflammation and genomic instability resulting in neoplasia.19–23 In

conjunction with these critical drivers of carcinogenesis, other factors

related to the etiopathogenesis of cancer involve energy metabol-

ism24–26 and evasion of the immune surveillance system.27–29 When

cancer spread and metastasis occur, the ‘tumor microenvironment’ in

the bone of PCa patients may allow cells to remain dormant or sen-

escent and eventually allow the establishment of a ‘seed and soil’ site

where PCa proliferation and growth may occur over time.29,30 These

molecular alterations can be evaluated with a variety of protocols that

detect the numerous changes in chromosome structure and organiza-

tion in cancer and other diseases. These protocols include nucleic acid

sequencing, real-time PCR, methylation-specific qRT-PCR, compar-

ative genomic hybridization, chromosome staining, fluorescence in

situ hybridization, genotyping and cloning. Many of these molecular

tools or modifications are currently being applied as diagnostic and

prognostic tools for oncology research.

The organization and function of the nucleus depends on the effi-

cient packaging of chromatin, the spatial geometry of the chromo-

somes and the organization of the nuclear matrix and its interactions

with actin, lamins, nucleolus and other nuclear bodies (such as PMLs,

Polycomb, Cajal and Speckles).17,18,31,32 These structural elements are

normally proficiently organized to provide the required physiological

nuclear functions related to RNA, DNA and protein biosynthesis and

regulation. In 1974, Berezney and Coffey identified the importance of

a new class of nuclear proteins, the nuclear matrix proteins, which play

a key role in the maintenance of nuclear structure (shape, size and

chromatin organization) and function in normal cells and cancer

cells.33 Numerous advances have been made in the understanding of

how the nuclear matrix structure is organized with respect to interac-

tions with the chromatin and inner nuclear membrane structures such

as lamins, emerin, matrix attachment region and other nuclear mem-

brane proteins that impact nuclear structure in cancer.13,34–36 Another

critical class of nuclear proteins is the high mobility group N (HMGN)

protein family. HMGN1 has a particularly important role in inducing

chromatin alterations in response to DSBs originating from reactive

oxygen species, ultraviolet radiation and ionizing irradiation. When

such DSBs occur in the DNA, the nucleosomes and several transcrip-

tion factors (p300, cH2AX, CSA, XAB2 and modified histones) as well

as the DSB-sensing factors, ataxia telangiectasia mutated, CAPF and

HMGN1 are recruited to correct the DNA damage.10,15,37 This repair

process is not always perfect because occasionally there are alterations

in DNA that initiate carcinogenesis, and if the causes of initiation

persist, cancer progression ensues.

There is an excellent review by Bianco-Miotto et al.,38 which covers

a portion of the genetic and epigenetic alterations that occur in PCa

development and progression. In addition, other molecular events

have been demonstrated in PCa, and initiators such as chronic infec-

tions, inflammation, aging and genetic instability are clearly involved

and result in amplifications, mutations, deletions, copy number vari-

ation (CNV) and single nucleotide polymorphisms.38–40 This review

is focused on the assessment of nuclear structure and alterations in

nuclear morphometry, which can be accurately quantified by

digital image analysis via computer-assisted imaging systems

(CAIS).35,36,38,39 In addition, there are new tools for studying the tissue

and nuclear architecture by quantitative histomorphometry, which

calculates spatial topological texture features by using graphics tools

and newly developed multimodal data algorithms. Hence, the overall

biological and clinical translational contributions of the use of nuclear

morphometry using CAIS in PCa will be addressed in men with indo-

lent PCa or aggressive PCa.

EVOLUTION OF NUCLEAR MORPHOMETRY TECHNOLOGY

Manual planimetry

The history of pathologic cellular diagnosis dates back to the mid-

1800s with the efforts of Virchow40 and Beale,41 where the importance

of a microscopic interpretation of the cancer cell and the nucleus was

first characterized as being diagnostic. The importance of nuclear

structure in cancer diagnosis and prognosis made its first major ad-

vance with the use of histochemical stains such as hematoxylin and

eosin (H&E) and the Papanicolaou (Pap stain) for staining fixed

human tissue for cytology and cell morphology, respectively. The

microscope and several improvements in lens and lighting over the

years allowed for the detailed observation of nuclear size, shape and

chromatin texture in cells, which clearly indicated abnormalities in

cancer cells. Hematoxylin was demonstrated to form a dye–metal

complex with arginine-rich ‘basic (cationic) nucleoproteins’ such as

histones of the nucleus. Eosin dye is acidic in nature and tends to bind

to more eosinophilic cellular structures (cytoplasm, collagen and mus-

cle fibers) producing various shades of pink. Combining H&E permit-

ted the opportunity to study nuclear structure and its internal

organization. The Feulgen staining reagent specifically and quantita-

tively binds to DNA in cellular material. The reagent binds to DNA by

uncovering the free aldehyde groups in DNA during the acid hydro-

lysis process, which then reacts with the Feulgen reagent via a Schiff-

Base interaction to form a stable, colored compound (blue) that

absorbs light at 560 nm.42,43 Figure 1 illustrates the H&E as well as

Feulgen DNA-stained cancer and benign-appearing (cancer-adjacent)

tissue microarray (TMA) spots.

This review will focus on the nucleus and the quantitative methods

used to assess its structure in PCa. The methodology will briefly cover

flow cytometry (FCM), digitizing nuclear size and shape by tracing

and focus on the application of quantitative image analysis utilizing a

microscope and computer-assisted software to study nuclear size,

shape and chromatin texture. These protocols may be manual, semi-

automated or completely automated. Notably, it is also feasible to

conduct a quantitative biomarker image analysis by applying a fluo-

rescent or chromogen-based antibody-directed biomarker analysis in

pathologic tissues or cells.

Manual digital image (planimetry) analysis technology

In 1982, Diamond et al.44 were the first to utilize Graphpad software

and a Zeiss Planapochromatic 3100 oil immersion objective with a

312.5 ocular (magnification, 31250) to trace 300 malignant and

benign nuclei from each PCa case. With this approach, they easily

separated the benign (normal) nuclei from the malignant nuclei.

Next, they compared nuclear size and shape in all stage B PCa cases

that had long-term follow-up and determined that they could distin-

guish those with a good prognosis from those with a poor prognosis

(metastasis) with high accuracy (P,0.005). Defining a circle as 1.0,

they calculated the nuclear roundness factor as follows: our roundness
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factor5(C/2p)/(A/p)1/2 (C5circumference and A5area), where as

the circularity form factor 54pA/c2.

The nuclear roundness factor technology successfully identified

men with a 14- to 15-year survival-free metastasis from those that

did not. Subsequently, Dr Donald Coffey’s laboratory and Dr

Mitchell Benson compared the use of FCM (where the nuclei were

labeled with acridine orange) to measure light scatter (forward and

perpendicular) with the nuclear roundness factor performed on the

same nuclei to assess tumor aggressiveness and heterogeneity of sev-

eral well- to poorly-differentiated rat Dunning prostate tumor cell

lines. The correlation between FCM and nuclear roundness variance

(NRV) was exceptional.45,46 These two key papers from 1984 demon-

strated that measuring shape and size by FCM correlated well with

NRV (the formula is NRV5radius (circumference)/radius (area) (R/

r)5(P/2p)/(A/p)1/2) (P5perimeter). Furthermore, these data indi-

cated that perpendicular light scatter by FCM correlated with the

two critical biological properties of PCa pathogenesis: tumor aggres-

siveness and tumor heterogeneity. Also in 1984, Epstein et al.47 con-

firmed the clinical value of the irregularity of nuclear shape or NRV in

19 Stage A2 human PCa tissues (eight cases with a good prognosis and

11 with a poor prognosis) and could separate these two groups better

than the Gleason grade. Later, others using a commercially available

hardware and software program validated the clinical value of NRV

measurements with a Zeiss inverted IM microscope (Carl Zeiss, Inc.,

Thornwood, NY, USA) equipped with a Zeiss planapachromatic

3100 oil immersion objective at a total magnification of 32440.

The images were analyzed with the DynaCELL Motility Morphometry

Measurement workstation (JAW Associates, Inc., Annapolis, MD, USA).

With this method, measurements differed by less than 5% among exam-

iners, and the authors confirmed that this variable readily predicts pro-

gressive disease and mortality of PCa.48–50 Finally, Veltri et al.51 showed

that the accuracy of NRV is significantly higher than the Gleason score to

predict metastasis and PCa-specific death in men with long-term follow-

up (median follow-up: 19 years). Therefore, NRV is better able to

identify the aggressive phenotypes of PCa than the Gleason score and

is associated with an increase in the irregularity of the nuclear border.

Partin et al.52 were able to combine nuclear morphometry (NRV) with

the Gleason score, clinical stage and age to create the ‘Prognostic Factor

Score’ to predict three risk groups based on Kaplan–Meier plots.

Therefore, NRV alone and in combination with other clinical and patho-

logic features not only acts as a quantitative measure of pleomorphisms,

which reflects PCa heterogeneity, but also predicts PCa progression

when combined with other parameters.

Quantification of nuclear size, shape and chromatin organization

using computer-assisted digital image analysis

The use of quantitative nuclear structure to assess prostate histology

and predict PCa outcomes became a focus in the late 1980s. Digital

image analysis and computers capable of accurately measuring nuclear

structure and calculating algorithms based on combining significant

features were able to provide integrated solutions. A number of

approaches have been evaluated in an attempt to replace the current

subjective visual approach of grading PCa. In fact, experienced pathol-

ogists have used the Gleason system to diagnose and prognosticate

PCa since the 1970s with a great deal of success. This system has been

markedly improved and enhanced to improve accuracy, reduce inter-

pretation errors and ensure the reproducibility of prognostic informa-

tion based on the efforts of many experts in the field of urology.53–55

However, Kuroiwa et al.56 reported a 54.8% concordance rate of the

Gleason scores between a local and central review. In addition, there

was an undergrading rate of 25.9% and an overgrading rate of 19.2% at

a local review based upon data collected from 50 institutions on 2015

patients with T1c-3 PCa who underwent radical prostatectomy (RP)

between 1997 and 2005.

The Gleason System for PCa histopathological grading is based on

how benign the cancer tissue looks when viewed under a low power

microscope (310–320) by an expert pathologist. Less dangerous

prostate tumors have an appearance of normal glandular tissue;

aggressive tumors that are more likely to invade and metastasize differ

from normal tissue owing to a loss of normal glandular architecture

(size, shape and organization), as well as other histological features,

including changes in the cell nuclear structure. To assign a Gleason

score, the pathologist first looks for a dominant (primary) pattern of

cell growth or grade (the area where the cancer is most prominent) and

then looks for a less widespread pattern or grade (secondary), and

gives each one a grade number. The Gleason score is the sum of the

dominant, or primary, tissue pattern grade (representing the majority

of tumor) and the less dominant, or secondary, tissue pattern grade

(assigned to the minority of the tumor). Today, pathologists tend

to describe a Gleason score of 5 or 6 as a low-grade cancer, 7 (314

or 413) as medium-grade, and 8, 9 or 10 as high-grade cancer.

Occasionally, a pathologist may note a small area of a higher grade

pattern in a biopsy or RP specimens known as a ‘tertiary pattern’ and

may record this result.55 A lower-grade cancer tends to grow more

slowly and is less likely to spread than a cancer with a higher grade.

Some limitations for the Gleason score system involve interpretations

when comparing a biopsy to RP specimens, reproducibility and dif-

ficulty in diagnosing small acinar atypical lesions.

Gleason grade/score and image analysis

Initially, attempts were made to improve the prognostic capabilities of

PCa grading by visually fusing features using a multivariate analysis

method; three variables were selected to create a new prognostic grad-

ing system: tumor tissue architecture, nuclear anaplasia and presence

or absence of mitoses.57 The authors claim that their new system

demonstrated improvements over the routine Gleason scoring system

in evaluating prognosis as assessed by Kaplan–Meier survival plots.

However, this approach was not routinely adapted for the pathological

analysis of PCa clinical specimens. Several other laboratories have used

nuclear morphometry to study the Gleason grade at the nuclear and

tissue architectural level. The Gleason grading system (tissue and cel-

lular changes indicative of cancer) and tumor stage (pathologic extent

of disease inside the gland and if it has spread outside the gland) have

served as independent and clinically significant ‘prognostic factors’

which can predict biochemical recurrence, metastasis and overall

patient survival. PCa glands and cells that appear to be healthy cells

(benign) are given a low Gleason grade, and cancer cells that look less

like healthy cells are given a higher Gleason grade. To assign a Gleason

score, the pathologist first looks for a dominant (primary) pattern of

cell growth or grade (area where the cancer is most prominent) and

then looks for a less widespread pattern or grade (secondary) of

growth, and gives each one a grade number. The Gleason score is

the sum of the dominant or primary cancer tissue pattern grade

(representing the majority of tumor; see the embedded figure) and

the less dominant or secondary cancer tissue pattern grade (assigned

to the minority of the tumor), resulting in a Gleason score or sum

ranging from 2 to 10. Today, urologists describe a Gleason score of 6 as

a low-grade cancer, 7 (314 or 413) as medium-grade, and 8, 9 or 10 as

high-grade cancer. A lower-grade cancer grows more slowly and is

less likely to spread than a cancer with a higher grade. Hence, this

Nuclear morphometry of prostate cancer
RW Veltri et al

377

Asian Journal of Andrology



important subjective parameter of pathological diagnosis has resulted

in the application of diverse approaches using various CAIS as well

as methods for high-dimensional data analysis to assess tissue-

based morphological and molecular parameters to develop prog-

nostic decision support tools such as algorithms, nomograms and

Correlation & Differential Dependency Networks.58–61

One commercial approach used the Bacus CAS digital CAIS.62 The

Bacus imaging system evolved from CAS-100 to CAS-200 and even-

tually to the BLISS CAIS, which could scan, store and perform quanti-

tative image analysis on tissue slides.63 The BLISS system was capable

of scanning TMAs and surgical slides, conducting quantitative image

analyses for immunohistochemistry, DNA content and nuclear mor-

phometry and then transporting the images and data via the internet.

The CAS software was also capable of conducting DNA ploidy and

nuclear morphometry analyses.64 Numerous researchers utilized the

CAS system to quantify DNA ploidy, and in some institutions, nuclear

morphometry was performed on Feulgen-stained tissue preparations.

The CAS-200 imaging system has a morphometry software package

that includes 40 nuclear features measurements that are expressed as

equations based on the pixel maps captured from the nuclei ana-

lyzed.63–65 Several image analysis companies offered nuclear morpho-

metry software programs; the features are similar whether it is light

microscope-based (CAS200, AutoCyte and BLISS) or fluorescence-

based (Chromavision).

Bacus used the BLISS imaging system and the CAS-200 quantitative

DNA software program (40 features) to develop a nuclear grading

morphometric calculation (continuous variable) to monitor a chemo-

prevention treatment regimen.62,63 He used the mean and standard

deviation (s.d.) of the 40 CAS-200 nuclear-feature measurements and

transformed measurements of normal, preneoplastic and neoplastic

nuclei into Z-scores scaled in s.d. units (Z-units). By this method, the

nuclear grades of normal epithelia are always distributed about a mean

value of zero. Hence, the individual Z-scores can be weighted by a

coefficient and summed to obtain the final nuclear grade. These

weighting coefficients are obtained by a Fisher linear discriminate

analysis of the n-dimensional mean differences of pre-invasive (intra-

epithelial neoplasia) or invasive neoplastic nuclei compared with the

reference population of normal nuclei.63 This Z-scoring grading sys-

tem was able to differentiate breast DCIS grades 1, 2 and 3. In addition,

this approach could discriminate CIN-3 lesions from normal and

detected changes pre- and post-DMFO chemopreventive treatment.

Veltri et al.65 used the AutoCyte Pathology Workstation (TriPath

Inc., Burlington, NC, USA) digital imaging system and Feulgen-

stained prostatic nuclei (Figure 2) to study the Gleason grades in

RP specimens. A Gleason grade TMA prepared by Dr Jonathan I

Epstein, a pathologist at Johns Hopkins Hospital, contained sets of

four cores (0.6 mm) per case of Gleason grade 3, Gleason grade 4 and

Gleason grade 5 PCa. The concept was to use the AutoCyte nuclear

features shown in Table 1 on pools of 1100 nuclei from these three

Gleason grades to determine the optimal variables to discriminate the

three Gleason grades (3, 4 and 5) based on the Multivariate Logistic

Regression analysis. Nine CAS-200 features (perimeter, area, Feret X,

Feret Y, maximum Feret, intensity, median optical density, s.d. of gray

values and DNA ploidy) were selected for Gleason grade comparisons.

The results yielded areas of receiver operating characteristic (ROC)

curves that distinguished differences among benign cancer-adjacent

nuclei and Gleason grade 3 (ROC–AUC50.78); Gleason grade 4

(ROC–AUC50.86) and Gleason grade 5 (ROC–AUC50.88) with

accuracies of 73%, 78% and 80%, respectively.65 By calculating the

predictive probability plots, we were able to note significant variations

(marked heterogeneity) among the three Gleason grade patterns.

Additionally, using the CAS-200 system, Venkataraman et al.66 could

separate Gleason grade 3 and Gleason grade 4 by evaluating prostate

biopsies with an 85% classification accuracy using a three-nuclear

CAS-200 feature set (minimum diameter, angularity and sum optical

density) as determined by a decision-tree analysis. The latter feature

set provides one approach to determine Gleason grade based on

quantitative nuclear morphometry and provides data to improve

our understanding of morphological variability in nuclear structure

and its role in PCa heterogeneity among the Gleason grades.

Using the AutoCyte imaging technology and the QUIC-DNA soft-

ware package, Isharwal et al.67 demonstrated that the %DNA index has

an independent prognostic value to predict progression, metastasis

and PCa-specific survival in men with long-term follow-up (median

follow-up: 17 years). Next, Isharwal et al.68 showed that DNA content

measured in the benign cancer-adjacent and the cancer area of the

diagnostic biopsy can predict unfavorable biopsy conversion (i.e., a

recommendation for curative intervention) among men enrolled in an

‘active surveillance’ program. Finally, in further support of the use of

DNA content as a morphometric biomarker, Isharwal et al.69 demon-

strated that DNA could serve as a ‘surrogate’ to the Gleason score to

predict PCa pathological stage. Although several nuclear features

including nuclear size and shape parameters were significantly able

to predict PCa pathologic stage, DNA content was the best predictor.

Further, replacing the Gleason score with DNA content in each peri-

operative model showed equivalent or improvement in the accuracy of

predicting the PCa pathological stage. The DNA ploidy in PCa and in

other tumor types has demonstrated clinical potential, provided that a

commercially proven system is employed to generate reproducible

results.70–74

Figure 2 Digital image analysis of Feulgen-stained prostate nuclei. These arti-

ficially colored images are based on the pixel maps obtained from the AutoCyte

Pathology Workstation of the two representative cells that are illustrated above.

Figure 1 Illustration of the hematoxylin and eosin (H&E) and the Feulgen DNA-

stained cancer and benign-appearing histology preparation (cancer-adjacent

area) of prostate tissue microarray (TMA) spots.
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Another modern computational approach to quantify the Gleason

score utilizes the capturing of digitized tissue histology images and

developing multimodal data algorithms, which fuses several variable

clinical and pathological types (categorical (nominal, ordinal and

dichotomous); discrete, continuous and quantitative). These variables

originate from routine diagnostic parameters and images of benign,

pre-invasive and/or malignant tissue architecture bioinformatics and

molecular biomarker parameters, which are used to predict PCa

patient outcomes such as postoperative stage, clinical recurrence and

patient survival. The computational methodology currently involves

complex high dimensional histomorphological imaging data and

develops mathematical solutions based upon a variety of machine

learning devices (i.e., Support Vector Machines, Artificial Neural

Networks, Genetic Algorithms, etc.).75–81 Note that these innovative

approaches do not focus solely on the nucleus; rather, they assess the

key molecular alterations and histological glandular, cellular and nuc-

lear changes in prostate tissue architecture during malignant progres-

sion to create an objective measure instead of a subjective visual

interpretation of changes (i.e., the Gleason score) in PCa. Several

methods are used to calculate the alterations in tissue glandular archi-

tecture and the host immune responses following the initiation and

progression of PCa (Table 2). These methods utilize spatial topological

texture features (i.e., fractals, wavelet and multiwavelet transforms,

Voronoi Diagram, Delaunay Triangulation and Minimum Spanning

Tree).80 One group applying a Support Vector Machine has been able to

separate Gleason grade 3 vs. Gleason grade 4 with 95.8% accuracy,

Gleason grade 3 vs. benign epithelium with 96.2% accuracy and

Gleason grade 4 vs. benign epithelium with 100% accuracy (Figure 3).

Recently, Ali et al.82 used a novel ‘adaptive active contour scheme’ that

combines boundary and region-based energy terms with a shape prior

to a multilevel set formulation to separate Gleason grades 3–5 in a TMA

containing 40 PCa cases (two images per case). Using a total of seven

nuclear features (area overlap ratio, average radial ratio, compactness,

convexity, mean nuclear area, mean nuclear perimeter, mean nuclear

diameter and principal component analysis) from each of the segmen-

ted nuclei, they could differentiate Gleason grade patterns 3 vs. 4 in the

reduced embedding space with a classification accuracy of 84%.

Applying a different approach (a leave-one-out approach), Lee and

Huang83 used fractal dimensions and two classifiers to process a total

of 182 pathological images with a resolution of 5123384 pixels (34

images were Gleason grade 3 and 46 images Gleason grade 4); one

classifier used a Bayesian approach and the other a k-nearest neighbor

approach. The Gleason grades were estimated with a 92.86% accuracy

using the Bayes classifier and an 89.01% accuracy using the k-nearest

neighbor classifier. In summary, using a variety of nuclear morphome-

try approaches, the nuclear size, shape and chromatin organization

(including DNA) are often valuable features for constructing solutions

Table 1 Nuclear morphometric descriptors of important parameters

in biochemical recurrence in the AutoCyte Pathology Workstation and

quantitative nuclear grade (QNG) signature. Reproduced from Veltri

et al.101

QUIC DNA morphometric

measurement

Measurement type b coefficient P.z

Perimeter Size/shape

Area Size/shape 20.0490319 0.004

Circular form factor Size/shape

Feret X Size/shape

Feret Y Size/shape

Minimum Feret Size/shape

Maximum Feret Size/shape

Excess of gray values DNA content

Skewness of gray values DNA content

Standard deviation (s.d.)

of gray values

DNA content 20.0762125 0.010

Maximum gray value DNA content

Minimum gray value DNA content

Intensity DNA content 6.0731029 0.010

Minimum optical

density (o.d.)

DNA content

Maximum o.d. DNA content

Median o.d. DNA content

s.d. o.d. DNA content

Skewness of o.d. DNA content 5.849436 0.048

Excess of o.d. DNA content 20.0249485 0.034

DNA ploidy DNA content 17.29464 0.001

Transmission Texture

Variance Texture

Sum average Texture 2603.313 0.021

Sum entropy Texture 211225.53 0.024

Sum variance Texture

Cluster shade Texture 0.0270699 0.012

Diagonal moment Texture

Sum of homogeneity Texture 229869.61 0.017

Correlation Markovian 2643.6912 0.037

Difference moment Markovian

Inverse difference moment Markovian 41413.18 0.018

Sum entropy Markovian

Entropy Markovian

Information measure A Markovian

Information measure B Markovian

Maximal correlation coefficient Markovian

Coefficient of variation Markovian

Peak transition probability Markovian 16359.42 0.048

Diagonal moment Markovian

Second diagonal moment Markovian 2838.5605 0.013

Abbreviation: QUIC, quantitative immunohistochemistry.

Table 2 Summary of image-derived features used to characterize architectural arrangement and morphological appearance of prostate cancer

nuclei. The relationship of graph and morphological features to visual attributes used for diagnostic decision-making by pathologists is also

shown. Modified from Madabhushi et al.102

Feature class Derived attributes Relevance to histology

Voronoi tessellation Number of nodes, number of edges, cyclomatic number, number of triangles, number of k-walks, spectral

radius, eigenexponent, Randic index, area, roundness factor, area disorder, roundness factor homogeneity

Tissue architecture and

arrangement of nuclei

Delaunay triangulation Number of nodes, edge length, degree, number of edges, cyclomatic number, number of triangles, number

of k-walks, spectral radius, eigenexponent, Wiener index, eccentricity, Randic index, fractal dimension

Minimum spanning tree Number of nodes, edge length, degree, number of neighbors, Wiener index, eccentricity, Randic index,

Balaban index, fractal dimension

Nuclear morphology Margin spicularity, fractal dimension, height to width ratio, roundness factor, area overlap ratio, area disorder,

perimeter, diameter

Nuclear, size boundary,

appearance
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relating to the current visual interpretation of the Gleason grade/score.

These innovative image and data analysis approaches are methods that

may be automatable and will create new objective methods to interpret

the Gleason grade and/or score and, when combined with clinical and

pathological variables, will be able to augment PCa outcome predictions

employing decision-support tools.80–83 A limitation at this time is that

these new models for computing novel solutions to serve as surrogates

for the Gleason grade/score have been used only rarely for predicting

PCa outcomes.

PREDICTING OUTCOMES—APPLYING NUCLEAR

MORPHOMETRY

Postoperative stage

The prediction of pathological stage based upon pre-treatment

biopsy results using tissue morphometry has used routine clinical

and biomarker bioinformatics. By combining biopsy serum

prostate-specific antigen (PSA), the Gleason score and clinical stage

or digital rectal exam, Partin and his colleagues84–88 revised a series

of tables to predict the likelihood of four pathological outcomes.

Others have used these variables as well as molecular biomarkers to

predict outcomes for PCa patients.70–72 Badalament et al.72 com-

bined a nuclear morphometric signature using the CAS-200 instru-

ment with serum PSA to predict stage with an AUC–ROC 586%

(sensitivity585.7%; specificity571.3%). This was at a time in the

diagnosis and prognosis of PCa when such predictions were less

accurate. A limitation of this early algorithm was the number of

nuclear features available and the stringency for the Multivariate

Logistic Regression modeling. However, when the model was

applied to incoming biopsy specimens, the algorithm performed

within 5% of specifications.

Veltri et al.89 studied the biopsies of 557 consecutive men that

underwent RP at Johns Hopkins Hospital from October 1998 to

Figure 3 Dimensionality reduction and manifold learning. Reproduced from Madabhushi et al.102 Non-linear dimensionality reduction used to classify prostate

adenocarcinoma into Gleason grade 3 and grade 4 patterns. (a) Low dimensional embedding of the high dimensional attribute space via local linear embedding of 20

images representing prostate cancer grades 3 (circles) and 4 (squares). Each image is displayed as a point in 3D eigenspace. The clustering clearly shows very good

discrimination between these two classes, which clinically is the most challenging problem in terms of Gleason grading. (b) Bar plots reflecting the classification

accuracy obtained via a supervised classifier in distinguishing between pairs of tissue classes—grade 3/4, grade 3 vs. benign epithelium, and grade 4 vs. benign

epithelium via a Support Vector Machine classifier. Note that in every case, the classification accuracy is over 90%.

Figure 4 Automated imaging technology for the diagnosis and prognostic evaluation of prostate cancer. ANN, Artificial Neural Networks; QIHC, quantitative

immunohistochemistry; SVM, Support Vector Machines.
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January 2000. Combining quantitative nuclear grade (QNG), the

Gleason score and complexed PSA density (complete model) yielded

an area under the ROC curve of AUC–ROC582.4% (sensiti-

vity573.5%; specificity583%) to predict non-organ-confined PCa.

Hence, this model confirmed that when QNG is combined with the

Gleason score and PSA, an improved prediction of pathological stage

is possible.

Biochemical recurrence

In 1996, Veltri et al.64 used the CAS-200 imaging system with only

38 nuclear morphometric descriptors to predict PCa biochemical

progression. The patient cohort included 115 patients with clinically

localized PCa, and the mean follow-up period in 70/115 patients with-

out disease progression was 10.461.7 years. Using backward stepwise

multiple linear regression at a variable feature selection stringency of

P,0.05, the variances of 11/38 of the nuclear morphometric des-

criptors were found to be significant for biochemical progression

(P,0.00001; AUC–ROC586%; sensitivity578%; specificity583%).

Furthermore, the QNG and the postoperative Gleason score, when

combined, created a Multivariate Logistic Regression model for the

prediction of biochemical progression, yielding an AUC–ROC

592% and having a sensitivity of 89% and specificity of 84%. These

two parameters (QNG and Gleason score) separated the 115 patients

into three statistically significant ‘risk groups’ (from low to high) based

upon Kaplan–Meier analysis. Next, our laboratory90 proposed a pos-

sible mechanism involving histone acetyltransferase p300 (p300 HAT)

in PCa, which was previously described by Debes et al.91 as a basis for

alterations in cancer cell nuclear structure and the biomarker (p300)

does predict PCa biochemical progression. Employing an NCI

Cooperative Prostate Cancer Tissue Resource TMA of 92 cases

with ong-term follow-up (56 non-recurrences and 36 recurrences),

we demonstrated that nuclear features, i.e., circular form factor

(rho520.26; P50.012) and minimum Feret (rho520.21; P50.048)

exhibited significant correlations with p300 protein expression. Finally,

p300 expression was able to predict biochemical recurrence as a con-

tinuous or a dichotomous variable and can be combined with the

Gleason score for biochemical recurrence risk stratification. In addi-

tion, studies in our laboratory revealed that the Gleason score and

pathological stage correlated to several DNA content measurements

supporting prior and current research.67,68,92–95 More image-based

morphometry translational research needs to be performed to under-

stand the molecular mechanisms that alter nuclear structure during

PCa progression.

Metastasis and PCa-specific survival

Predicting aggressive PCa is based on having a sufficient sample size

and long-term follow-up data for the successful application of nuclear

morphometry as a variable in addition to routine pathological and

clinical variables. Khan et al.92 in our laboratory predicted progression

to metastasis and/or PCa mortality in 227 RP specimens ‘marked’

by pathologist Dr Epstein by employing the AutoCyte Pathology

Workstation (TriPath Inc., Burlington, NC, USA.) and QUIC-DNA

morphology software. They compared the Gleason score and lymph

node status to QNG for partitioning the patient cohort into three risk

groups to predict local recurrence and/or mortality; the QNG demon-

strated improved accuracy for both outcomes over the Gleason score

and lymph node status. The QNG variable proved to be a strong

predictor of PCa progression to metastasis and/or mortality in this

study. Next, Veltri et al.93 employed the same imaging technology

and used a TMA with cancer and adjacent-benign areas to evaluate

the use of QNG alone and with pathological and clinical variables to

predict metastasis and PCa death. Both the cancer epithelial and the

Figure 5 Personalized concept to decision making for prostate cancer. IR, irradiation; QIHC, quantitative immunohistochemistry; WW, watchful waiting or active

surveillance for very low or low risk prostate cancers observed on a diagnostic biopsy.
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benign-adjacent nuclear area QNG solutions could predict metastasis

and/or PCa death, and the Kaplan–Meier plots partitioned the patients

into three groups with very significant log ranks. Furthermore, it was

possible to combine QNG with the Gleason score and lymph node

status to generate improvements in the prediction of biochemical

recurrence as well as distant metastasis and/or PCa death. The only

other single variable capable of predicting PCa progression outcomes

was NRV using the JAW nuclear tracing hardware and software.48,49

Partin et al.50 studied 100 PCa cases with long-term follow-up and

were able to combine NRV (captured 150 nuclei/case), clinical stage,

Gleason score and age to create the ‘Prognostic Factor Score’ to predict

disease progression and/or PCa death. Unfortunately, the JAW appar-

atus is no longer commercially available, and it took approximately 2 h

to capture nuclei for each case. However, the potential value of mea-

suring NRV accurately with a rapid, automated imaging system would

now be commercially useful. In addition, other research using QNG

and quantitative nuclear morphometry as well as other imaging tech-

nology consistently have demonstrated that shape, size and DNA con-

tent are predictive of PCa progression to metastasis and death67,70 and

therefore require validation for possible implementation in the future.

Active surveillance (AS) for prostate cancer and CAIS

A current dilemma in PCa management is overdetection and over-

treatment because of PSA screening, which detects cases that would

have remained undetected and caused no morbidity in the absence of

screening.3 AS with delayed curative intervention has been proposed

as an alternative to immediate surgery for low-grade, low-stage (indol-

ent) tumors in an effort to reduce unnecessary treatment for prostate

cancer.5,96 Epstein et al.97 proposed a PSA density of ,0.15 ng ml21

cm23 and favorable diagnostic needle-biopsy characteristics (i.e., a

Gleason score ,7, two or fewer cores involved with cancer, f50%

of any core involved with cancer) as criteria to identify low-grade, low-

stage tumors that can be followed with serial measurements of PSA

and repeated biopsies without immediate intervention until reclassi-

fication requires definitive treatment. Makarov et al.98 identified 75

cases that qualified for AS (30 men required reclassification upon

annual follow-up) to evaluate nuclear morphometry using the

AutoCyte system and created a QNG signature of 12 nuclear morpho-

metric descriptors. The QNG signature had an ROC–AUC of 87%

with a sensitivity of 82%, specificity of 70% and accuracy of 75% to

predict reclassification using the diagnostic AS biopsy. Therefore,

QNG can predict AS failure using the diagnostic biopsy and might

be improved in the future by adding specific molecular biomarkers.

Next, Isharwal et al.68 demonstrated that DNA content could predict

AS failure when either the benign cancer-adjacent or cancer areas were

measured. Recently, our laboratory99 combined DNA content with the

measurement of serum [22]ProPSA to predict the likelihood for

biopsy reclassification at the annual surveillance biopsy exam among

men enrolled in an AS program. Therefore, nuclear morphometry and

specific molecular biomarkers can be combined to improve the accu-

racy of predicting the failure of AS candidates at the time of diagnosis

and safely manage men who choose this option.

What does the future hold for nuclear morphometry?

The application of bioengineering computational sciences to quantify

nuclear structure and tissue architecture, as well as the development of

automated processes for this quantification, will set the stage for

improved imaging systems and software to calculate solutions for

the diagnosis and prognosis of PCa. Significant challenges need to

be met: (i) there is as yet no strong commercial partner to engineer

the hardware with the correct specifications for the microscope, cam-

era and software; (ii) direct collaboration with urologists and pathol-

ogists is required to ensure that the appropriate clinical dilemmas are

addressed; (iii) validation studies are needed to verify the individual

clinical applications; and (iv) FDA-approved trials must be carried out

to establish specific claims. Currently, our research partners compute

alterations in tissue glandular architecture and the host immune res-

ponses following the initiation and progression of PCa, and they util-

ize spatial topological texture features (such as fractals, wavelet and

multiwavelet transforms, Voronoi Diagram, Delaunay Triangulation

and Minimum Spanning Tree) to assess the tissue and nuclear archi-

tecture.80,82 Finally, we now have the advanced imaging systems and

the bio-informatic tools necessary to permit high-dimensional data of

all types to be combined, allowing the generation of computational

solutions that can be readily validated in appropriate clinical settings

(Figures 4 and 5). However, to benefit patient management, these new

tools will require automation and technical and clinical validation in

multisite studies for various specific outcomes of PCa, such as active

surveillance, biochemical recurrence, metastasis, and survival.100
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