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Mathematically modelling and controlling prostate cancer
under intermittent hormone therapy
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In this review, we summarize our recently developed mathematical models that predict the effects of intermittent androgen

suppression therapy on prostate cancer (PCa). Although hormone therapy for PCa shows remarkable results at the beginning of

treatment, cancer cells frequently acquire the ability to grow without androgens during long-term therapy, resulting in an eventual

relapse. To circumvent hormone resistance, intermittent androgen suppression was investigated as an alternative treatment option.

However, at the present time, it is not possible to select an optimal schedule of on- and off-treatment cycles for any given patient. In

addition, clinical trials have revealed that intermittent androgen suppression is effective for some patients but not for others. To resolve

these two problems, we have developed mathematical models for PCa under intermittent androgen suppression. The mathematical

models not only explain the mechanisms of intermittent androgen suppression but also provide an optimal treatment schedule for the

on- and off-treatment periods.
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INTRODUCTION

Prostate cancer (PCa) is one of the major causes of cancer deaths in

Western countries, particularly among elderly people. In Eastern

countries, including Japan, the death rate from PCa is rapidly increas-

ing, probably owing to such factors as aging and changing dietary

habits. Therefore, it is an urgent issue to develop better preventative

measures and therapies for PCa.

The prostate was discovered to be closely related to the testes

through observations of the effects of castration of animals and

humans. In fact, the genesis, differentiation, and normal functions

of the prostate are regulated by male hormones (androgens) that are

synthesized and secreted mainly from the testes and partly from the

adrenal glands. Because PCa cells at an early stage also have a depen-

dence on androgens, androgen ablation results in the degeneration of

prostatic tumours. This phenomenon was first identified in animal

studies by Huggins and Hodges1 in the 1940s and subsequently con-

firmed in the human prostate. Since then, the major treatment for

advanced PCa has been endocrine therapy.2 Furthermore, the con-

dition of PCa can be sensitively monitored by a serum biomarker

called prostate-specific antigen (PSA).

Hormone therapy with androgen deprivation usually induces apop-

tosis of the androgen-dependent (AD) cancer cells and the temporal

regression of a prostate tumour. However, if androgen deprivation is

overly prolonged, the AD cancer cells change to androgen-independent

(AI) cancer cells, which are resistant to hormonal therapy. This change

eventually leads to recurrence (or relapse). The relapse of PCa, which is

common for many patients, has been a major issue associated with

conventional continuous androgen suppression (CAS). Formerly,

CAS was irreversible because castration was performed by the surgical

removal of the testes. Currently, medical castration is the treatment of

choice, and it is possible to suspend androgen suppression by simply

stopping the administration of the drugs. It is this form of hormone

therapy that we used to formulate our mathematical models.

Androgen deprivation is a fundamental therapy for inhibiting the

increase of AD cells in a tumour. Building on this concept, intermit-

tent androgen suppression (IAS) was proposed affording the possibi-

lity of limiting the duration of androgen-poor conditions and avoid-

ing emergence of AI cells.3–5 When the PSA level increases and reaches

an upper threshold value r1, androgen is withdrawn by the admini-

stration of agents used for medical castration. When the PSA level

decreases and reaches a lower threshold value r0, androgen suppres-

sion is suspended. The upper and lower threshold values have been

determined by medical doctors based on a guideline. IAS aims to

maintain low PSA levels by repeating cycles of on-treatment and

off-treatment periods, as shown in Figure 1.

Bruchovsky et al.4,5 first demonstrated the efficiency of IAS in ani-

mal experiments. After this pioneering work, the clinical efficacy of

IAS for human patients has been studied by many research groups.6

The advantages of IAS over CAS include not only possible therapeutic

effects, but also the reduction of side effects during off-treatment

periods. However, it is still controversial how to optimally schedule

the on- and off-treatment periods. In addition, clinical trials have

revealed that IAS is effective for some patients but not for others.

Because the characteristics of the progression of prostate cancer
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depend on individual patients, it would be desirable to personally

tailor IAS therapy based on PSA levels. For this purpose, we have

investigated the conditions for relapse under IAS by modelling pro-

state tumour growth. Once a mathematical model is defined, an

optimal schedule for IAS therapy can be theoretically obtained.

MATHEMATICAL MODELS FOR IAS

The initial mathematical model of PCa under IAS

Jackson7,8 presented a mathematical model of prostate tumour growth

under CAS. The model reproduces three typical phases in the time

course of the PSA level under CAS: the exponential growth before

castration, the exponential decay immediately after the castration

and the eventual recurrence. Assuming that a prostate tumour is

composed of cells with AD and AI phenotypes, as in the previous

study, we constructed the initial mathematical model of prostate

tumour growth under IAS9 as follows (see Figure 2 for the schematic

diagram):

dx

dt
~ Gx(a){Mzx(a)½ �x ð1Þ

dz

dt
~Mzx(a)xzGz(a)z ð2Þ

da

dt
~

{az(1{u)a0

t
ð3Þ

where x, z, a and a0 represent the population of AD cells, the popu-

lation of AI cells, the androgen concentration and the normal andro-

gen level, respectively. The PSA level v (ng ml21) is defined as

v~cxxzczz, where cx~cz~1 for simplicity. The on- and off-treat-

ment periods of hormone therapy are represented by u~1 and u~0,

respectively. The treatment is suspended (u is changed from 1 to 0)

when vƒr0 and dv=dtv0, and it is restarted (u is changed from 0 to 1)

when v§r1 and dv=dtw0. These conditions for switching between

on- and off-treatments are assumed to be checked every 28 days,

according to the usual IAS therapy. The growth of AD cells and that

of AI cells are governed by the respective net growth rates Gx(a) and

Gz(a) and the mutation rate Mzx(a) from the AD to AI phenotype;

these are represented as follows:

Gx(a)~ax k1z(1{k1)
a

azk2

� �
{bx k3z(1{k3)

a

azk4

� �
ð4Þ

Gz(a)~az 1{
ba

a0

� �
{bz ð5Þ

Mzx(a)~m1 1{
a

a0

� �
ð6Þ

where a, b, k and m1 are the parameters. In particular, m1 shows the

maximum mutation rate. The rates depend on the androgen level a.

Because AD cells proliferate in a normal androgen environment, while

androgen deprivation induces apoptosis of AD cells, the growth rate

Gx(a) of AD cells is positive under normal androgen conditions and

negative under an androgen-poor condition. When androgen

deprivation is prolonged, the progression to an AI state is observed.

Therefore, the growth rate Gz(a) is positive in an androgen-poor con-

dition. However, the growth rate of AI cells in a normal androgen

condition is not fully known. Therefore, we assume that Gz(a) is a

linear function of the androgen level a by introducing the slope para-

meter b. The change from AD to AI cells seems to occur when andro-

gens are withdrawn. That is to say, the mutation rate Mzx(a) increases

as the androgen level decreases.

First let us consider the following three typical cases for the slope

parameter b.

. Case (1): AI cells grow at the constant rate independent of the

androgen level (b~0).
. Case (2): AI cells do not grow when the androgen level is normal

(b~0:31).
. Case (3): AI cells decrease when the androgen level is normal

(b~1).

Figure 3 shows the time courses of the PSA levels generated by the

initial model. In Case (1), IAS is not able to delay the time to relapse

because the AI cells grow at any androgen level. In Case (2), IAS can

prolong the time to relapse by setting the lower threshold at an appro-

priately small value. However, if it is set too small, the PSA level will

not reach the threshold, and suspension of treatment will not occur.

In Case (3), IAS successfully results in repetitive cycles of on- and

Figure 1 Schematic illustration showing variations in the serum PSA levels under

CAS (the dashed line) and IAS (the solid line). CAS, continuous androgen sup-

pression; IAS, intermittent androgen suppression; PSA, prostate-specific antigen.

Figure 2 Schematic diagram for the initial model of prostate cancer under inter-

mittent androgen suppression. In this diagram, arrows show facilitation or tran-

sition and bars show inhibition. The dashed bar means that this effect depends on

Cases (1), (2) and (3), which are discussed in the main text.
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off-treatment periods with PSA variations in a feasible range. In this

case, the relapse that occurs under CAS can be prevented by IAS.

Mathematically, relapse and relapse prevention correspond to a

divergent and a non-divergent solution, respectively. When the cycles

of on- and off-treatment periods are repeated exactly, the correspond-

ing non-divergent solution is a periodic solution called a limit cycle.

We have developed a numerical method to locate a bifurcation point

of the limit cycle in hybrid dynamical systems, as in the initial model,

and specified the boundary between the parameter regions for the two

qualitatively different solutions.10

We have also clarified that the mechanism of the transition is related

to a grazing bifurcation, which is unique to hybrid systems.11 As

shown in Figure 4 of Ref. 10, it is important to appropriately set the

upper and lower threshold PSA values to avoid relapse, although the

effect of the slope parameter b plays a decisive role in this initial model

as well.

Figure 4 Time courses of the PSA levels produced by the competition model. The

upper threshold value is set at r1515 for all the time series. The lower threshold

value r0 is set at 0 (the blue dot-dashed line), 1 (the red solid line) and 10 (the

black dotted line) (ng ml21) in each panel. (a) C50 (without competition); (b)

C50.002. We set b50. PSA, prostate-specific antigen.

Figure 3 Time courses of the PSA level produced by the initial model of prostate

cancer under intermittent androgen suppression. The upper threshold value is

set at r1515 for all time series. The lower threshold r0 is set at 0 (the blue dot-

dashed line, corresponding to CAS), 1 (the red solid line) and 10 (the black dotted

line) (ng ml21) in each panel. (a) Case (1) with b50; (b) Case (2) with b50.31; (c)

Case (3) with b51. CAS, continuous androgen suppression; PSA, prostate-

specific antigen.

Figure 5 Bifurcation diagrams showing the boundary between the regions of relapse and relapse prevention in the competition model with b50. The model was run

until either the cancer cells exceed the bounded region (defined by 0ƒxƒ50 and 0ƒyƒ50) or the length of simulations reached 30 000 days. During the simulation,

we checked every 28 days for whether we needed to switch between on- and off-treatment periods. The colour shows how many days the cancer cells are within the

bounded region. (a) The lower threshold value is set at r051, and the upper threshold value r1 is varied between 1 and 30. (b) The upper threshold value is set at r1515,

and the lower threshold value r0 is varied between 0 and 15.
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The partial differential equations model

The initial model of IAS, as shown in Equations (1)–(6), can be extended

to a partial differential equations model that takes into consideration the

spatial distribution of tumour cells in prostate cancer,12 where a tumour

is modelled as a radially symmetric sphere densely packed with AD and

AI cells. The model equations can be written as follows:

Lx

Lt
z+:(Vx)~DxDxz Gx(a){Mzx(a)½ �x ð7Þ

Lz

Lt
z+:(Vz)~DzDzzMzx(a)xzGz(a)z ð8Þ

da

dt
~

{az(1{u)a0

t
ð9Þ

Here, the tumour volume is represented as an incompressive fluid with

velocity V, and Dx and Dz are the random motility coefficients of the AD

and AI cells, respectively. The other notations are the same as in the

initial model. We found that the partial differential equations model

reproduces similar results in Cases (1), (2) and (3) of the initial model.12

The partial differential equations model (7)–(9) can be further extended

to other models, including the competition effect explained in the next

section.13,14

The model including competition between AD cells and AI cells

It is controversial whether or not the growth rate of AI cells can be

negative in the presence of normal androgen levels, as in Case (3);

however, there are experimental results with LNCaP cell sublines that

support this assumption.15 Furthermore, our analysis of actual PSA

data from patients undergoing IAS treatment, explained in the section

on ‘The piecewise linear model’, has shown that the net growth rate of

mutated AI cells during the off-treatment periods is negative in the

majority of patients.16 However, there is the possibility that AI cells

decrease in the presence of normal androgen levels owing to competi-

tion between AD and AI cells, even if the net growth rate of AI cells is

positive. This is because AD cells have a tendency to proliferate more

in an androgen-rich environment.

The extended model with the competition effect is described as

follows17:

dx

dt
~ Gx(a){Mzx(a)½ �x{Cxz ð10Þ

dz

dt
~Mzx(a)xzGz(a)z{Cxz ð11Þ

da

dt
~

{az(1{u)a0

t
ð12Þ

where C represents the strength of the competition. This competition

term can induce a decrease of AI cells during off-treatment periods.

The results of simulations for this competition model are presented

in Figure 4. When the competition term is effective, it can stop the

divergence of the solution and hence relapse. Generally speaking, the

bifurcation diagram shows a qualitative change for the solution struc-

ture for the model depending on certain parameters. The bifurcation

diagrams for this model are shown in Figure 5a and 5b. The model

suggests that when C is larger, intermittent androgen suppression

tends to be more effective.

The stochastic model

The three deterministic models introduced above are useful for repro-

ducing the typical tumour growth under IAS and for understanding

the parameter conditions for relapse prevention. However, we need to

check the robustness of the model against intrinsic noise in biological

cells and the observational noise associated with monitoring the PSA

level. Thus, we presented a stochastic model to examine the effect of

noise, as follows18:

dx

dt
~ Gx(a){Mzx(a)½ �xzjxx ð13Þ

dz

dt
~Mzx(a)xzGz(a)zzjzz ð14Þ

da

dt
~

{az(1{u)a0

t
zjaa ð15Þ

where jx, jz and ja represent the dynamical noise. We also assume

that the PSA level is described as v~cxxzczzzjv, where jv is the

observational noise. The stochastic noise ji is white Gaussian noise

with Sji(t)T~0 and Sji(t)jj(t
0)T~Nidijd(t{t 0), where Ni and S:T

represent the noise intensity and time average (i,j~x, z,a, v).18 The

schedule of IAS is set according to the clinical trials19,20 to reproduce a

realistic situation. The treatment is suspended when a decreasing PSA

level falls below the lower threshold r054 ng ml21 at 36 weeks after

each start of an on-treatment period; the treatment is restarted when

an increasing PSA level reaches the upper threshold r1510 ng ml21.

Figure 6 shows the time courses of the PSA level over 20 simula-

tions. We set the noise intensities at Nx~Nz~Na~0:001 and

Nv~0:0001. The number of cycles before relapse can be varied only

with the stochastic noise. Before relapse, the trajectory of the model

nearly grazes the switching section that corresponds to the lower

threshold in the state space. If the trajectory reaches this section, it

goes to the next cycle. Otherwise, it diverges to infinity along the z axis,

implying relapse. Therefore, the solution is very sensitive to the small

noise when it is close to the section, which leads to the variation of the

number of cycles.

We analysed the transient behaviour of PSA variations. We focused

on the length of off-treatment periods and the PSA-nadir level. The

PSA-nadir level is the local minimum of the PSA level, which is typ-

ically observed at the time of restarting an off-treatment period. The

length of the off-treatment period is shortened, and the PSA-nadir

level is increased gradually as the cycle proceeds (Figure 6). This

gradual increase of the PSA-nadir level implies the progression to an

AI state.

Numerical experiments suggest that the length of an off-treatment

period negatively correlates with the PSA-nadir level immediately

before each start of the off-treatment period (Figure 7). This property

has been reported also in statistical analyses of PSA variations observed

in clinical trials.19,20 Hence, both the diversity and statistical nature of

the true PSA variations can be explained well by the stochastic model.

The piecewise linear model

The characteristics of prostate cancer can be different for different

patients. Therefore, we have developed methodology to construct a

personalized mathematical model of prostate cancer for each indi-

vidual patient from monitoring of the PSA time courses. The meth-

odology can be used for diagnostic and prognostic purposes and lead

to outcome predictions for the patient.16 An accurate mathematical

model for fitting actual data and making predictions may require a
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large number of parameters to reproduce the important characteristics

of the true PSA time series. However, the number of estimated

parameters should be minimal to avoid overfitting and too much

complexity.

Thus, we have further modified the former models for the following

reasons. Because the equation for androgen dynamics in the former

models is not very influential for the essential shape of the PSA time

courses, it was able to be eliminated from the models without much

influence (see also Ref. 16). Moreover, the previous models are not

able to reproduce the biphasic decrease of PSA levels during the on-

treatment periods, which is a typical property in most clinical data. To

make the biphasic decrease possible, a new state equation was added by

assuming another type of cells.

For a prostate tumour consisting of three types of cell populations,

we constructed a piecewise linear model as follows (see Figure 8 for the

schematic diagram).16,18

On-treatment periods:

dx

dt
~w1

x,xx ð16Þ

dy

dt
~w1

y,xxzw1
y,yy ð17Þ

dz

dt
~w1

z,xxzw1
z,yyzw1

z,zz ð18Þ

Off-treatment periods:

dx

dt
~w0

x,xxzw0
x,yy ð19Þ

dy

dt
~w0

y,yy ð20Þ

dz

dt
~w0

z,zz ð21Þ

where x, y and z represent the populations of the AD cells, AI cells with

reversible adaptation that can return to AD cells during the off-treat-

ment periods and mutated AI cells that cannot be changed to AD cells,

respectively. It is reasonable to introduce the AI cells with reversible

changes based on recent studies on the signalling pathways. The para-

meter w1
i,j represents how much of the population j contributes to the

net growth of the population i during the on-treatment periods.

Similarly, the parameter w0
i,j represents how much of the population

j contributes to the net growth of the population i during the off-

treatment periods. The PSA level is given by cxxzcyyzczz, where

cx~cy~cz~1 for simplicity.

Using selected clinical PSA data, we fit the model parameters.

Although the part of the dataset that contained relapsing disease was

unavailable, we can reproduce relapse during the prediction by adding

additional constraints.16 Figure 9 shows successful data fitting of the

initial 2.5 cycles. Using the estimated parameter values, we can predict

the future PSA levels to some extent. The predictions by the model for

CAS and IAS are also shown. The time-series predictions suggest that

for this patient, IAS can slightly prolong the time to relapse compared

with CAS (for other examples, see Refs. 16 and 18).

Based on these data analysis and predictions, we have classified the

patients into three types, as follows (see also Figure 10):

Figure 7 The correlation between the PSA-nadir level and the length of the following off-treatment period. (a) The first cycle; (b) the second cycle; (c) the third cycle.

PSA, prostate-specific antigen.

Figure 6 Time courses of the PSA level over 20 simulations, generated by the

stochastic model. Stochastic noise is responsible for the variation in the time to a

relapse. PSA, prostate-specific antigen.
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. Type (i): The patients for whom IAS can prevent relapse. The

condition is given by w0
z,zv0.

. Type (ii): The patients for whom IAS can delay relapse. The con-

ditions are given by w1
x,xww0

x,x, or w1
y,yww0

y,y or w1
z,zww0

z,z.
. Type (iii): The other patients for whom CAS is better than IAS.16

We have classified clinical data from 90 patients, according to the

above conditions.18 Most patients (18 of 19) who experienced relapse

were classified as Type (ii) or Type (iii). The majority (52 of 71)

without relapse were classified as Type (i). (See Table 2 of Ref. 18

for details.) The significance level of the correlation between clinical

decisions made by the patient’s doctors and the classification by the

piecewise linear model was 4:4|10{8; we used the program ‘Fisher’s

exact test’ at http://aoki2.si.gunma-u.ac.jp/exact/exact.html for cal-

culating this P value. Therefore, the result of the classification by the

piecewise linear model is nearly consistent with the judgments made

by medical teams on the basis of the patients’ responses.16,18

CONTROLLING PCA WITH MATHEMATICAL MODELS

Once an accurate mathematical model for prostate cancer is defined

and its parameters are estimated for each patient, one can control the

growth of prostate cancer by designing an optimal and personalized

treatment schedule for the on- and off-treatment periods.21,22 In this

section, we demonstrate how to design an optimal treatment schedule,

based on the method in Ref. 22.

Here we focus on the piecewise linear model defined in the section

on ‘The piecewise linear model’. In Ref. 22, we proposed an optimal

design principle for intermittent androgen suppression. For the

optimal design of a treatment schedule, we minimized the growth rate

of prostate cancer by optimally setting the ratio of the on- and off-

treatment periods. Mathematically this minimisation can be achieved

by minimizing the largest eigenvalue for the matrix E0,t that appears as

the following analytic form of the solution22:

x(t)

y(t)

z(t)

0
B@

1
CA~E0,t

x(0)

y(0)

z(0)

0
B@

1
CA ð22Þ

where Ef,g represents the matrix component of the integration of the

solution between times f and g. Thus, E0,t depends on the schedule of

the on- and off-treatments. We can obtain this form of the solution

because the model is piecewise linear.

The optimisation itself is combinatorial optimisation and requires

considerable computation. To circumvent this computation burden,

we assume that the treatment schedule is periodic and decompose

Equation (22) in the following way:

Figure 9 Fitting and prediction of the clinical PSA data by the piecewise linear

model. The solid and dashed lines correspond to the model behaviours for IAS and

CAS, respectively. The crosses show the actual observations of PSA. The datasets

used in our paper were taken from the clinical trial of Refs. 19 and 20. This clinical

trial was approved by the Health Protection Branch of the Ministry of Health of

Canada and by the Clinical Research Ethics Review Boards of the participating

centres. For this clinical trial, all patients provided written informed consent in

accordance with their institutional guidelines. CAS, continuous androgen suppres-

sion; IAS, intermittent androgen suppression; PSA, prostate-specific antigen.

Figure 10 Flow chart for classifying the patients of prostate cancer to three types

based on the estimated parameters for the piecewise linear model.
Figure 8 Schematic diagrams for the piecewise linear model. AD, androgen-

dependent; AI, androgen-independent.

Figure 11 Conventional intermittent androgen suppression (the blue solid line)

vs. an optimal periodic schedule for intermittent androgen suppression (the red

dot-dashed line). We fitted the piecewise linear model using the observations of

the PSA level for the first two cycles shown by the crosses. Then, the optimal

periodic schedule was applied. The green dashed line shows the case of con-

tinuous androgen suppression. PSA, prostate-specific antigen.
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x(t)

y(t)

z(t)

0
B@

1
CA~E0,t{nT E0,Tð Þn

x(0)

y(0)

z(0)

0
B@

1
CA ð23Þ

where T is the period and n is the maximum integer such that nT does

not exceed t. Then, assuming the durations of the on- and off-treatment

days in one period T to be t1 and t05T2t1, respectively, E0,T can be

written as

E0,T~Et1,TE0,t1
ð24Þ

E0,t1
~

e1
x,x 0 0

e1
y,x e1

y,y 0

e1
z,x e1

z,y e1
z,z

0
BB@

1
CCA ð25Þ

Et1,T~

e0
x,x e0

x,y 0

0 e0
y,y 0

0 0 e0
z,z

0
BB@

1
CCA ð26Þ

where e1
i,j depends on w1

i,j

n o
and t1, and e0

i,j depends on w0
i,j

n o
and t0.

The eigenvalues of E0,T are given by

e0
z,ze1

z,z ð27Þ

1

2
e1

x,xe0
x,xze1

y,xe0
x,yze1

y,ye0
y,y

� �
+

h
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

e1
x,xe0

x,xze1
y,xe0

x,yze1
y,ye0

y,y

� �2

{4e1
x,xe0

x,xe1
y,ye0

y,y

r # ð28Þ

We evaluated the maximum of the eigenvalues numerically and

obtained t1 and T to satisfy 0ƒt1ƒTand 0vTƒ365|2 and to min-

imize the maximum.22

Here we show an example of an optimal treatment schedule for a

Type (ii) patient (Figure 11). For this patient, we estimated the set of

parameters from the first two cycles of IAS and designed an optimal

periodic treatment schedule. The optimal periodic treatment schedule is

better than the conventional intermittent androgen suppression

because in the conventional method, the switching from an on-treat-

ment period to an off-treatment period did not occur after the third off-

treatment period in this case. While in the optimal periodic schedule,

the growth rate of PSA was lower than that in the conventional method

in the long run.

DISCUSSION

We have reviewed five mathematical models of prostate tumour

growth under IAS.

The three deterministic models initially mentioned in this paper

have been constructed to closely reproduce relapse, delayed relapse

and relapse prevention. Because the parameter regions for relapse and

relapse prevention correspond to qualitatively different solutions, the

boundary between the two regions has been specified by using a

numerical bifurcation analysis technique for hybrid dynamical sys-

tems; this type of numerical bifurcation analysis describes a qualitative

change of the solution structure when the values of certain parameters

change.

The stochastic hybrid system in the section on ‘The stochastic

model’ has been introduced to investigate the effect of stochastic noise.

The model inherits the basic property of the deterministic model.

However, the system is very sensitive to noise near the switching

section where the switching from an on-treatment period to an off-

treatment period occurs. Therefore, the number of cycles until the

relapse can change as a result of small noise variations. This variability

is a characteristic unique to switched dynamic systems, which is not

observed in globally smooth dynamical systems.

The piecewise linear model in the section on ‘The piecewise linear

model’ has been introduced to fit and reproduce authentic serum PSA

concentrations, as obtained from clinical trials. By estimating the

parameter values in the system for each patient, the system can rep-

resent the characteristics of PSA variations, which vary from patient to

patient. The piecewise linear model is able to classify patients in a

manner that is highly consistent with clinical decision making.

Despite its simplicity in terms of the number of parameters and the

model equations, the piecewise linear model is the best model among

those considered in this review paper, including the partial differential

equations models, which quantitatively describes the dynamics of the

clinically observed PSA time series with a biphasic decline in the PSA

level during the on-treatment periods.

Figure 12 (a) A schematic diagram of personalized IAS therapy based on mathematical modelling. (b) A generalized schematic diagram of personalized therapy

based on mathematical modelling. IAS, intermittent androgen suppression; PSA, prostate-specific antigen.
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We also illustrated how to optimize treatment schedules by min-

imizing the maximal eigenvalue. At this time, we do not have clinical

evidence for the validity of the optimisation, and thus, the method

requires evaluation in future clinical trials.

Currently, we plan to implement the time-series analysis tech-

nique to assist medical doctors in clinical practice. The system uses

monitored PSA levels as inputs, outputs the results of the model that

fits the clinical data and predicts possible PSA variations under both

CAS and IAS. For more precise diagnosis and prognosis, it is nece-

ssary to improve the model structure by incorporating factors related

to molecular biology and clinical medicine. It is also important to

reduce the necessary length of the PSA time-series data to obtain a

good-fitting model without losing the accuracy of the prediction. In

addition, we need to develop a statistical method to evaluate the

reliability of the model for each individual patient so that a medical

doctor can decide if they should follow the suggestions made by the

mathematical models. To be more convenient, the control and opti-

misation theory could be helpful to determine the best treatment

schedule.21,22

Thus, mathematical models of prostate cancer can not only eluci-

date the mechanisms underlying intermittent androgen suppression

for prostate cancer, but also provide more detailed diagnoses and

optimal treatment schedules.

Moreover, it should be possible to generalize the personalized IAS

therapy based on mathematical modelling, as explained in this review.

Figure 12a shows a schematic diagram of this IAS treatment, which

is composed of the observation of PSA time-series data for a patient,

the construction of a personalized mathematical model for the patient

from the PSA data, the optimisation of the hormone therapy sche-

duling with the mathematical model, and finally, the actual treatment

by a medical doctor. This methodology can be generally applied to

other diseases if both reliable biomarkers and treatment options are

available, such as PSA and hormone therapy for prostate cancer.

Figure 12b shows a generalized scheme of this methodology for the

personalized treatment of any disease. We expect that this kind of

personalized chronotherapy based on mathematical modelling can

create new possibilities for sophisticated therapy.
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