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Specific changes in the expression of imprinted genes in
prostate cancer—implications for cancer progression and
epigenetic regulation

Teodora Ribarska, Klaus-Marius Bastian, Annemarie Koch and Wolfgang A Schulz

Epigenetic dysregulation comprising DNA hypermethylation and hypomethylation, enhancer of zeste homologue 2 (EZH2)

overexpression and altered patterns of histone modifications is associated with the progression of prostate cancer. DNA methylation,

EZH2 and histone modifications also ensure the parental-specific monoallelic expression of at least 62 imprinted genes. Although it is

therefore tempting to speculate that epigenetic dysregulation may extend to imprinted genes, expression changes in cancerous

prostates are only well documented for insulin-like growth factor 2 (IGF2). A literature and database survey on imprinted genes in

prostate cancer suggests that the expression of most imprinted genes remains unchanged despite global disturbances in epigenetic

mechanisms. Instead, selective genetic and epigenetic changes appear to lead to the inactivation of a sub-network of imprinted genes,

which might function in the prostate to limit cell growth induced via the PI3K/Akt pathway, modulate androgen responses and regulate

differentiation. Whereas dysregulation of IGF2 may constitute an early change in prostate carcinogenesis, inactivation of this imprinted

gene network is rather associated with cancer progression.
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EPIGENETIC DYSREGULATION IN PROSTATE CANCER

Like other cancers of old age, prostate cancer develops over many

years. Multiple pathogenic events adding on each other drive initially

the development of prostatic intraepithelial neoplasia from which

invasive carcinomas emerge that metastasize in more aggressive cases.

Many genetic changes responsible for altered differentiation, sustained

cell proliferation and invasive growth of prostate cancers have been

elucidated in the last decade. Prominently among them figure

chromosomal rearrangements generating novel fusion genes from

which ETS transcription factors like ERG are overexpressed in an

androgen-dependent manner.1 Another common change in prostate

cancer is inappropriate activation of PI3K/Akt signalling, which is

most efficiently achieved by homozygous deletions of the PTEN gene

that encodes a crucial inhibitor of the pathway.2 Like oncogenic ETS

transcription factors, PI3K signalling interacts with and modulates

androgen action.3–6 A major question in current prostate cancer

research is how these and other genetic changes conspire to bring

about the spectrum of prostate cancer phenotypes ranging from indo-

lent, well-differentiated local nodules to highly aggressive and often

poorly differentiated systemic cancers. Epigenetic abnormalities play a

seminal role in shaping the varying phenotypes of prostate cancer.7,8

Well-characterized abnormalities comprise DNA hypermethylation,

DNA hypomethylation, overexpression of the histone methyltransfer-

ase enhancer of zeste homologue 2 (EZH2) and several distinctive

changes in histone modification patterns. Typically, these epigenetic

changes aggravate with tumour stage and Gleason grade and can be

employed as prognostic biomarkers.9,10 A prominent exception to this

relation is constituted by consistent and distinctive DNA hypermethy-

lation events associated with early development.11,12 These events

induce aberrant methylation in more than 80% of prostate cancers

at the CpG islands of a dozen specific genes, which are normally free of

DNA methylation. Additional hypermethylation events are observed

in smaller subsets of the cases and many of these correlate with tumour

progression. Accordingly, consistent hypermethylation events can be

employed for detection of prostate cancers, whereas some additional

hypermethylation events can serve as indicators of worse pro-

gnosis.9,13 Hypermethylation of GSTP1 and PITX2, respectively,

exemplifies the two categories.14,15 The hypermethylation of CpG

islands at the transcriptional start region of genes is often associated

with silencing. More than 25 genes have so far been verified to be

silenced by hypermethylation in prostate cancer.9,13 While many

hypermethylation events have been investigated for their potential

as biomarkers, their functional relevance to the development of malig-

nancy is not well understood.13 In prostate cancer cell lines, restora-

tion of expression of several silenced genes, e.g., PDLIM4 and

RASSF1A, arrested proliferation or induced apoptosis.16,17 The con-

tribution of these genes to the phenotype of prostate cancers in

patients remains unclear.

Despite the aberrantly increased methylation at certain sites in

the genome, its overall content of methylcytosine decreases during
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progression of prostate cancer. This decrease reflects hypomethylation

of sequences that are methylated in normal tissues, i.e., intronic and

intergenic sequences and prominently, interspersed and centromeric

repeat sequences. Therefore, hypomethylation is primarily associated

with regional or global changes in chromatin organisation that facilitate

epigenetic reprogramming and genomic instability across the ge-

nome.18,19 Locally, hypomethylation may also lead to reactivation of

some genes that are normally repressed by DNA methylation. Although

the number of such genes is limited, they comprise important regulators

of pluripotency, lineage determination and development.18,20

The global changes in epigenetic regulation are also reflected in

altered patterns of histone modifications, some of which may also

be prognostic.10 However, neither the mechanisms underlying these

changes nor their consequences are very clear at this point. A large

number of studies have addressed changes in the Polycomb factor

EZH2 in prostate cancer (reviewed in Refs. 21–23). The Polycomb

group proteins are normally involved in lineage determination during

embryonic development and tissue maintenance, especially by sup-

pressing alternative differentiation choices. They aid in gene silencing

or in postponing gene activation to later differentiation stages. This

function is achieved—among others—by specific histone modifica-

tions. Thus, trimethylation of histone H3 at lysine 27 (H3K27me3) is

catalysed by the EZH2 subunit of the PRC2 Polycomb complex.

Overexpression of EZH2 in prostate cancer is believed to contribute

to altered patterns of histone modifications and to silence tumour

suppressor genes in a complementary or cooperative fashion with

DNA hypermethylation.24,25 Increases in EZH2 are brought about

by various mechanisms, including induction by E2F transcription

factors in proliferating cells,26 gene amplification and loss of the reg-

ulatory microRNA miR-101.27 Interestingly, EZH2 expression is ele-

vated as a consequence of ETS gene fusions in prostate cancer and may

in turn conspire with these transcription factors to block cell diffe-

rentiation, increase cell proliferation, facilitate invasiveness and alter

androgen responses.6,28 Accordingly, EZH2 expression levels have

been linked to cancer recurrence.25,29–31

EZH2 is by far not the only histone modifying enzyme upregulated

in prostate cancer. In particular and somewhat curiously, certain his-

tone demethylases of the JMJD2 family and KDM1/LSD1, which

counteract the biochemical activity of EZH2, are likewise upregulated

in prostate cancer.32,33 They interact as cofactors with the androgen

receptor and hypoxia-inducible factors and are implicated in the epi-

genetic changes during the development of castration resistance.34–37

GENOMIC IMPRINTING AND ITS REGULATIONa

DNA methylation, histone modifications and Polycomb factors, in

particular EZH2, are also instrumental in the prototypic epigenetic

phenomenon of ‘imprinting’. At least 62 genes in humans and twice as

many in mice are known to be differentially expressed depending on

their parental origin.38 The regulation of many imprinted genes

depends on DNA methylation marks that differ between the alleles

inherited from mother or father, designated differentially methylated

regions (DMR). Most DMRs are established during gametogenesis

and inherited and propagated by the zygote, whereas others, desig-

nated somatic DMRs, are established upon fertilisation, still in a

parent-of-origin-specific fashion. Most of these methylation marks

persist throughout life and are only erased in the embryonic prim-

ordial germ cells to be re-established once more in the new generation.

Depending on the gene, imprinting is maintained in all cell types or in

a tissue-specific manner. In addition or alternatively to DNA methyla-

tion, other epigenetic mechanisms like histone modifications and

inter- or intrachromosomal interactions such as looping are employed

to ensure the monoallelic expression of imprinted genes.39–42 With

respect to histone modifications, a striking characteristic of imprinted

genes is a seemingly bivalent pattern, with modifications typical of

actively transcribed genes such as trimethylation of H3K4 on one allele

and H3K27 trimethylation on the other one.43–45

Imprinted genes are often situated in clusters, allowing coordinate

regulation by common control regions consequently designated as

imprinting control centres (ICRs). ICRs often contain DMRs. Many

imprinted gene clusters encompass genes encoding non-translatable

regulatory RNAs, which are termed long non-coding (lnc-RNA) to

distinguish them from shorter species like microRNAs. Seemingly iso-

lated imprinted genes are often actually gene pairs, of which one

encodes an lnc-RNA acting on its partner gene. The regulatory RNAs

may function by recruiting chromatin modifying proteins, including

EZH2, to silence selected genes in the cluster,45–47 and by directing them

into specific higher-order chromatin structures located in transcription-

ally inactive subnuclear compartments.46,48–50 In contrast, the expressed

alleles of imprinted genes may be enabled to enter active subnuclear

compartments to gain access to ‘transcriptional factories’.51

The extraordinarily complex multi-level mode of regulation of

imprinted genes probably aims to tightly control the levels of gene

products. Indeed, similar mechanisms are employed in the analogous

process of X-chromosome inactivation to adjust the dosage of X-

chromosomal genes.52,53 In addition, imprinting may limit the influ-

ences of foetal or maternal factors on certain genes in the developing

embryo.54 Although the biological rationale for imprinting is not

firmly established, current thinking favours the ‘battle of the sexes’

theory.55 This theory is based on the observation that many imprinted

genes expressed from the maternal chromosome limit the acquisition

of maternal resources by the foetus through the placenta, while patern-

ally expressed genes function in the opposite direction to enhance

foetal supply and growth. In another mirror fashion, maternally

expressed genes regulate placental growth, while paternally expressed

genes are crucial for foetal growth and development.54,56

In addition, imprinted genes regulate the specification of certain

lineages such as the musculoskeletal system and the brain, but also

postnatal metabolism and social behaviour.56–58 In these functions,

imprinted genes cooperate with each other as well as with many non-

imprinted genes. In particular, a subnetwork containing the imprinted

genes IGF2, H19, PLAGL1/(ZAC1), CDKN1C, DLK1 and PEG3 was

characterized by remarkable co-expression across different organs and

developmental stages and by functional association (Figure 1).59–61

The genes of the network are thought to control energy homeostasis at

the levels of signal-sending (hypothalamus, pituitary and pancreas)

and signal-receiving (liver, fat, muscle, cartilage and bone) organs to

regulate body size, energy storage and expenditure during embryonic

and postnatal development.56 The function of this imprinted gene

network may thus consist in ‘programming’ the growing embryo for

optimal resource acquisition during foetal and adult life, with adjust-

ments to the current environment.56 However, the increasing number

of imprinted genes implicated in cancer and other diseases of adults

underlines that their function is not restricted to the placenta and

foetus.

Defects in imprinting are responsible for a number of congenital

paediatric diseases and syndromes. These often involve metabolic

aThere is another usage of ‘imprinting’ that should not be confused with the phenomenon of ‘genomic imprinting’ discussed in this article. Accumulating evidence suggests that
environmental effects on endocrine regulation in utero can have lasting influences throughout life, including the development of diseases like diabetes and prostate cancer. These
effects are likely to be mediated by epigenetic mechanisms too. The phenomenon should better be designated as ‘‘developmental reprogramming’’ to avoid confusion.
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disturbances, neurological deficiencies and either extensive or

scanty growth together with specific morphological abnormalities.

Perturbations in imprinted gene expression occur in Beckwith–

Wiedemann syndrome (BWS), Silver–Russell syndrome, intrauterine

growth restriction, transient neonatal diabetes mellitus and congenital

Wilms tumours.62–68 The lack of imprinting in such diseases origi-

nates from a failure in establishing epigenetic marks in germ cells or

maintaining them in the zygote or early embryo.

Aberrant imprinting patterns may also represent a major factor in

male infertility.69–71 In the gametes of some infertile men, imprinted

gene loci displayed abnormal methylation states.70,72–74 Moreover,

gametes of some infertile men contain reduced amounts of normal

H3K4me or H3K27me bivalent marks at certain imprinted genes and

at genes encoding essential transcription factors for early develop-

ment.75,76 These changes are associated with excessive methylation

of imprinted gene promoters and silencing.44,75,77–79

While failure to establish imprinting is a cause of paediatric diseases

and infertility, secondary loss of imprinting (LOI) contributes to dis-

eases of adults. In particular, it is a common epigenetic disturbance in

cancers, but is also quite often observed in preneoplastic and ageing

tissues.80–83 Strictly spoken, LOI denotes the loss of parent-of-origin

monoallelic expression of genes such that the two alleles may become

either both transcriptionally active or both silenced. Since monoallelic

expression is typically maintained by differential DNA methylation

and allelic histone modifications, LOI is also reflected by a conver-

gence of these epigenetic marks on both alleles. Experimentally,

monoallelic expression can be most easily ascertained through single

nucleotide or short repeat polymorphisms in gene transcripts. Loss of

differential DNA methylation and histone modifications are some-

times considered as surrogate indicators of LOI. In prostate cancer,

the most studied imprinted genes are IGF2 and H19.

INSULIN-LIKE GROWTH FACTOR 2 (IGF2)

IGF2 is the most widely studied imprinted gene in the context of

tumourigenesis.81,84 It belongs to a small imprinted gene cluster at

11p15.5 that also includes the H19 gene. The cluster is organized

around a differentially methylated ICR separating IGF2 from H19

and common enhancer regions. Normally, IGF2 is expressed exclu-

sively from the paternal allele and H19 from the maternal allele.

Paternal-specific IGF2 expression is ensured by interactions between

its promoter and distant enhancers. These interactions depend on the

methylation status of a second DMR, viz. DMR0 upstream of the IGF2

promoters, and on the epigenetic status of the major ICR. On the

maternal chromosome both regions are unmethylated, whereas on

the paternal chromosome both are methylated. Expression of the gene

cluster is ultimately regulated by differential formation of three-

dimensional chromatin loops that separate actively transcribed and

silenced genes and bring together different regulatory regions on the

two alleles on both chromosomes.85–87 The correct looping is ensured

by specific methylation patterns of the DMRs, and in particular by the

insulator protein CTCF, which binds only unmethylated DNA in the

central ICR.88 The intensely studied regulation of IGF2 and H19 serves

as a paradigm in the field.

The product of IGF2 is a growth factor related to insulin that is

essential for foetal development and growth. In adults, it acts as a

cohormone together with follicle-stimulating hormone or luteinizing

hormone. In general, IGF2 promotes cell growth, and also—like insu-

lin—affects cell metabolism. Like its non-imprinted paralogue IGF1,

IGF2 exerts its growth-promoting and anti-apoptotic effects mainly

through the type 1 IGF receptor (IGFR1). Both factors act in a para-

crine fashion on epithelial and stromal cells, but are more strongly

expressed in stroma than in epithelium of normal prostate tissue.89

Their expression is enhanced in malignant epithelial cells, especially in

tumours with high Gleason scores.90–94 IGFR1 activates PI3K/Akt

signalling, a major determinant of prostate cancer development and

progression.95

In prostate cancer, PI3K/Akt signalling is deregulated by different

mechanisms, most severely by loss of the negative regulator PTEN,

which reverses phosphorylation of phosphatidylinositol triphosphate

by PI3K.96,97 Particularly notable is downregulation of an inositol-

triphosphate phosphatase, INPP4B, which restricts the substrate sup-

ply of PI3K.98,99 In the absence of these negative regulators, activation

of PI3K signalling by IGFs via IGFR1 is enhanced and sustained

(Figure 2).

In prostate cancer, PI3K and androgen receptor (AR) signalling are

linked by a mutual crosstalk with inhibitory and stimulating interac-

tions.5,37,100,101 On the one hand, PI3K signalling enhances AR tran-

scriptional activity by stabilizing active AR homodimers and

sensitizing AR to low levels of androgen/DHT.95,102 On the other

hand, the androgen receptor interacts with or influences the expres-

sion of several pathway components, especially feedback inhibitors like

Figure 2. A sketch of the relationship between IGF signalling, the PI3K pathway

and androgen responses in the prostate. IGF, insulin-like growth factor.

Figure 1. A network of imprinted genes. On the basis of 116 mouse microarray

experiments, Varrault et al.60 discovered significant co-expression of selected

imprinted genes. The figure shows a simplified version of the original Pajek

network representation of coregulated imprinted genes disregarding the exact

degree of co-expression and omitting non-imprinted genes. The enlarged circles

represent the central imprinted genes of the network (modified from Ref. 60). The

genes indicated in bold are deregulated in prostate cancer according to our

analysis (Table 1). Note that IGF2R is not imprinted in humans. IGF2, insulin-

like growth factor 2.
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PTEN and INPP4B. Via PI3K signalling, IGFs regulate the androgen

response. Accordingly, the IGFR1 inhibitory antibody A12 blocked AR

transactivation induced by IGFR1 in the absence of androgens.103

Interactions between IGF signalling and the androgen response

occur at some further points. To name just a few, the pathway affects

the activity of AR cofactors, e.g., via stabilisation of b-catenin by

inhibition of its negative regulator GSK3. Furthermore, IGFR1 signal-

ling stimulates AR cofactors like GRIP and IDE.104,105 The AR coacti-

vators SRC1 and TIF2 are substrates for MAP kinases activated by IGFs

and EGF tyrosine kinase receptors.106 Consequently, endogenous

IGF1 or constitutive PI3K/Akt signalling is required for androgen-

induced prostate-specific antigen expression.95 IGF signalling relieves

Foxo-corepressor mediated inhibition of AR ligand-mediated trans-

activation.107

Together, enhancement of PI3K/Akt signalling by increased IGFR1

activity and loss of negative and feedback regulators like PTEN pro-

mote AR transcriptional activity even at the low androgen concentra-

tions achieved by androgen deprivation therapy. Ultimately, these

mechanisms permit androgen-independent activation of the AR,

termed illustratively ‘outlaw’ AR activation.108 Apart from their effect

on androgen signalling, IGFs through Akt create a potent survival

signal by inactivating the pro-apoptotic tumour suppressor proteins

FOXO1A and BAD, and activating the anti-apoptotic MDM2.95,107,109

This part of the signalling pathway may compensate for the lack of

androgen pro-survival signals in castration-resistant prostate cancers.

Therefore, pharmacological targeting of the IGFR1/PI3K/AKT signal-

ling pathway by direct interference at the receptor or by decreasing

circulating IGF1 levels is currently investigated in clinical trials.110

The deregulation of IGF2 in the cancerous prostate is likely caused

by epigenetic mechanisms that resemble those observed in other can-

cers.80,84,111 IGF2 overexpression, often caused by loss of imprinting, is

frequent across the range of paediatric tumours seen in BWS, in con-

genital and sporadic cases.112 LOI at the IGF2/H19 locus has been

found in various cancers, including bladder and breast cancers, and

in colorectal carcinoma.81,84 Moreover, IGF2 LOI has a very promising

diagnostic potential having been associated with an increased risk for

developing several adult-type cancers.80,83 For instance, LOI of IGF2 in

blood cells has been proposed as a biomarker for colorectal cancer

risk.113 A similar association has not yet been reported in prostate

cancer patients.

A common mechanism leading to biallelic IGF2 expression is gain of

methylation at the maternal ICR, which allows the interaction of the

IGF2 promoter with the enhancers on both chromosomes. This mecha-

nism has been observed in BWS patients.112 Alternatively, loss of

methylation of the paternal DMR0 is associated with increased IGF2

expression. This mechanism is not completely understood, since the

unmethylated maternal allele ought to function as a silencer, suppres-

sing IGF2 expression independent of H19 imprinting. Instead, loss of

methylation at the DMR0 is associated with increased IGF2 expression

in breast, colorectal and Wilms tumours, perhaps because silencing of

the maternal allele depends on additional repressor proteins that are no

longer available in somatic cells.87,112 In some cases, a switch to a

different promoter may reactivate the normally silent maternal IGF2

allele independent of ICR methylation status.114

Importantly, in the prostate, as in some other organs, IGF2 LOI is

also observed in the ageing tissue and especially in normal tissues

adjacent to the cancer. Due to this ‘field effect’ the highest expression

of IGF2 and H19 in the prostate is actually found in benign tissues

adjacent to cancer in comparison to fully normal tissues and

cancer tissues. Two studies reported significant associations between

overexpression and epigenetic aberrations at the locus in cancer adja-

cent tissues.82,115 One study found .80% methylation of the ICR in

benign prostatic hyperplasia samples, while 9/30 prostate carcinoma

samples showed ,40% methylation. Furthermore, the ICR was asso-

ciated with the repressive H3K9me2 modification in benign prostatic

hyperplasia but not in cancer tissues.115 In addition to ICR hyper-

methylation, the second study82 reported an association between

increased IGF2 expression in tumour-adjacent tissue and decreased

methylation of the DMR0, but no such changes in cancer tissues. Thus,

DNA methylation aberrations and altered chromatin structures are

likely to cause widespread IGF2 LOI in ageing prostates. This idea is

supported by an investigation of cultured primary prostate epithelial

cells demonstrating a conversion of the IGF2 imprinting status from

monoallelic to biallelic, with a 10-fold induction of IGF2 expression,

when these cells became senescent. Mechanistically, IGF2 LOI was

traced to a diminished CTCF expression in the senescent cells.80,116

H19

As compared to IGF2, its fellow gene H19 has hardly been studied in

prostate cancer. While under negative regulation by p53, H19 is

induced by c-myc, E2F1, FOXA and ZAC1.117 It is also upregulated

by hypoxia, where it promotes cell survival.117 All these factors are also

relevant in prostate cancer. H19 might potentiate IGF2 levels by inhib-

iting its suppressor IGFBP4 and has been implicated in epithelial–

mesenchymal transition in a breast cancer metastasis model.118

Knockdown of H19 during hypoxia led to decreased expression of

several genes which include AKT1, the prostate cancer biomarker

AMACR and the imprinted genes CDKN1C and INPP5A.119 In trans-

genic mice, H19 activated the expression of imprinted genes including

Dlk1, Rtl1, Gnas, Peg3, Slc38a4, Igf2R and Cdkn1c.59 Broader distur-

bances of imprinted genes are also observed following H19 deregula-

tion in human congenital diseases.120,121

The molecular mechanism by which the H19 RNA exerts its effects

is not entirely clear.119 By a better established mechanism, during germ

cell development, the H19 ICR interacts upon CTCF-binding with

other imprinted genes in cis and in trans generating chromatin struc-

tures poised for transcription, establishing an ‘imprinted interac-

tome’, and regulating the replication timing of further interacting

imprinted genes.85 H19 was shown to be regulated by steroid hor-

mones, including androgens, and prolactin in androgen-sensitive

LNCaP, but not in androgen-insensitive DU145 prostate cancer cells.

If the imprinted interactome persists in adult prostatic cells, H19 and

other imprinted genes might be influenced by androgen responses in

prostate cancer.122

Taken together, these findings infer that relaxed IGF/H19 imprint-

ing may occur early in prostate carcinogenesis where environmental

factors or ageing may influence its epigenetic state. One could specu-

late that the resulting overexpression of IGF2 and H19 may promote

the enlargement of an epigenetically unstable but not neoplastic pro-

genitor cell pool and skew the androgen response, thereby changing

the microenvironment and facilitating cancer formation.123

A SYSTEMATIC SURVEY OF IMPRINTED GENE EXPRESSION IN

PROSTATE CANCER

In addition to IGF2, activation or inactivation of further imprinted

genes may influence prostate cancer development and progression.

One wonders, in particular, to which extent imprinted genes may

manage to uphold their exquisitely regulated epigenetic patterns in

the face of the severe and progressive disturbances of epigenetic regu-

lation in prostate cancer. There are therefore many open questions.
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How many imprinted genes are deregulated in prostate cancer? Might

their deregulation result straightforwardly from an ‘epigenetic chaos’

in these carcinomas? How might imprinted genes contribute to the

phenotype of prostate cancer?

For a systematic approach to these questions, we have used the

Oncomine database (http://www.oncomine.org) in order to search

for changes in the expression of imprinted genes in the results of 16

microarray studies comparing benign vs. cancerous tissues from pros-

tatectomies. At the time of the search, the website ‘Geneimprint’

(http://www.geneimprint.com/) listed 62 genes proven to be im-

printed in humans. Of these, 52 had been investigated in at least two

independent microarray studies. Of them only 12 genes showed con-

sistent changes which at least approached statistical significance across

multiple studies (Table 1).

Most genes identified by this approach belong to the network of

coordinately regulated imprinted genes that regulate growth and dif-

ferentiation in the mouse embryo (Figure 1). Interestingly, IGF2 or

H19 were not among them, in keeping with the idea that deregulation

of these genes may occur across the entire organ. Instead, CDKN1C

followed by MEG3 presented the most significant changes. Other sig-

nificant expression changes concerned the 7q and 15q clusters and a

pair of imprinted genes at 6q24, of which PLAGL1 encodes the ZAC1

transcription factor and HYMAI a non-coding RNA. With the excep-

tion of PPP1R9A and GNAS, all genes were expressed at reduced levels

in the cancers compared to benign tissues. Of note, only the 7q and 10q

regions and to a lesser extent 6q undergo significant copy number

changes in prostate cancer.96 For SNRPN at 15q an almost equal num-

ber of studies described significant up- and downregulation. This may

be due to the extremely complex transcription pattern of the gene with

multiple splice variants confounding microarray analyses. It encodes a

splicing factor acting mainly in the brain.124,125 There is no informa-

tion on SNRPN function in the prostate or in cancer.

Below, we will summarize the current knowledge on the function

and regulation of the imprinted genes listed in Table 1 (except

SNRPN), with an accent on their potential influence on prostate can-

cer progression mechanisms. Although not formally identified by our

bio-informatic analysis, DLK1 and DCN will be treated, since they are

part of the imprinted gene network and some evidence already links

them to prostate cancer.

PLAGL1/ZAC1 AND HYMAI

The chromosomal region 6q24 lost in various cancers, including a

fraction of prostate carcinomas, is thought to contain a tumour sup-

pressor gene. The most likely candidate is pleiomorphic adenoma

gene-like 1 (PLAGL1), also known as ZAC1, which encodes a C2H2

seven-zinc-finger transcription factor and nuclear receptor coactiva-

tor. Two isoforms are generated via usage of alternative promoters.

Transcription of the shorter isoform starts from a DMR downstream

of the start of the longer isoform, which also includes the first exon of

the non-coding RNA gene HYMAI. Both genes are ubiquitously

paternally expressed. Defects in imprinting of the twin locus are impli-

cated in transient neonatal diabetes mellitus, a rare disease character-

ized by intrauterine growth retardation, dehydration, and failure to

thrive due to a lack of normal insulin secretion.68,126

During embryonic development ZAC1 participates in molecular

switches controlling progenitor cell fate decisions, proliferation and

differentiation of bone, muscle and adipose tissue, secretory organs,

including those of the gonadotropic axis (hypothalamus, pituitary and

gonads) and the endocrine pancreas.127 Its function during develop-

ment depends on its ability as a transcriptional activator. Monomeric

or dimeric ZAC1 binds to GC-rich palindromic DNA elements128,129

in the regulatory regions of the imprinted protein-coding genes IGF2,

CDKN1C, DLK1 and MEST, the imprinted ncRNA genes H19,

KCNQ1OT1 and MEG3; as well as in the non-imprinted genes

PPARG, CK14 and PACAP1.129–131 Zac1 was suggested to represent

a key regulator of the imprinted gene network in Figure 1.60

Apart from its function as a DNA-binding transcriptional activator,

ZAC1 acts as a powerful coactivator for the hormone-dependent

Table 1 Changes of imprinted gene expression in prostate benign vs. cancerous tissues

Gene symbol Gene product Chromosomal

localisation

Expression Differential expression

in PCa

Number of studies with Total number

of studies
Upregulating Downregulating

HYMAI Hydatidiform mole associated and imprinted

(non-protein coding)

6q24.2 Paternal # 0 3 4

PLAGL/ZAC1 Zinc finger protein PLAGL1 6q24–q25 Paternal # 1 12 16

SGCE Epsilon-sarcoglycan 7q21–q22 Paternal # 1 11 15

PEG10 Paternally expressed gene 10 protein 7q21 Paternal # 1 6 14

PPP1R9A Protein phosphatase 1, regulatory (inhibitor)

subunit 9A

7q21.3 Maternal # 5 0 6

INPP5F Inositol polyphosphate-5-phosphatase F 10q26.11 Paternal # 0 10 15

CDKN1C Cyclin-dependent kinase inhibitor 1C

(p57,Kip2)

11p15.5 Maternal # 0 12 12

MEG3/GTL2 maternally expressed 3 (non-protein coding) 14q32.2 Maternal # 4 13 15

NDN/PWCR Necdin 15q11.2–q12 Paternal # 0 10 14

SNRPN Small nuclear ribonucleoprotein-associated

protein N

15q11.2 Paternal # " 6 7 16

PEG3 Paternally expressed gene 3 protein 19q13.4 Paternal # 2 10 16

GNAS/NESP55 Guanine nucleotide binding protein (G

protein), alpha stimulating activity

polypeptide 1

20q13.32 Paternal # 11 6 15

Abbreviation: PCa, prostate cancer.

Imprinted genes found to be frequently differentially expressed in prostate benign vs. cancerous tissues, as found by in silico analysis of changes in 16 microarray studies

available in Oncomine. The arrows indicate over- or underexpression. Note: in cases when some studies measured no difference in expression between benign and cancerous

tissues, the total number of studies is bigger than the sum of studies with up- and downregulation. The sum of studies reporting up- or downregulation can be bigger than the

total number of studies due to differences between identifiers in complex genes such as GNAS.

Imprinted genes in prostate cancer

T Ribarska et al

440

Asian Journal of Andrology



activity of nuclear receptors, including the androgen, estrogen, gluco-

corticoid, and thyroid hormone receptors. In this role, it functions as a

scaffolding protein recruiting chromatin activators (p160 as well as

histone acetyltransferases CBP, p300 and PCAF), but also corepressors

(HDAC1 and mSin3a) to nuclear receptor target genes.132–134

Specifically, when interacting with the AR ZAC1 binds other coacti-

vators (GRIP1 and SRC1) to enhance AR transcriptional activity in a

hormone-dependent manner. The physiological role of ZAC1 may be

the prevention of AR activation by other coactivators in the absence of

hormone. Thus, ZAC1 synergized with GRIP1 in activating AR at

lower androgen concentrations but suppressed the ability of GRIP1

to coactivate AR in a hormone-independent fashion.133 In effect, loss

of ZAC1 may therefore promote castration-resistance in prostate can-

cer. However, this has not been investigated explicitly in human cancer

tissues.

ZAC1 may exert antitumour effects by enhancing the transcrip-

tional activity of p53 in the induction of certain antiproliferative pro-

teins such as p21Cip1 or apoptosis protease-activating factor-1.134–136

Moreover, ZAC1-can inhibit proliferation by directly activating the

PPARG gene, eliciting differentiation and growth arrest.130

Loss of ZAC1 expression has accordingly been observed in numer-

ous tumour types, including breast and ovarian tumours, melanomas,

astrocytomas, renal cell carcinomas and pituitary adenomas.137–142

ZAC1 overexpression inhibited tumour cell growth through induction

of apoptosis or cell cycle arrest.131,143 PLAGL1/ZAC1 could therefore

be relevant as a tumour suppressor in prostate cancer beyond its

function in androgen action.

SGCE, PEG10 AND THE 7Q21 IMPRINTED GENE CLUSTER

Chromosome 7q is among the most frequently altered chromosomes

in prostate cancer and subject to both gains and losses.96 These

changes also involve the 7q21 region that contains an imprinted gene

cluster. Several imprinted genes are clustered around two head-to-

head oriented paternally expressed genes—paternally-expressed gene

10 (PEG10) and sarcoglycan epsilon (SGCE). PEG10 is derived from

an ancient retrotransposon integration, which has been conserved in

many mammalian genomes. A maternally methylated region in the

first exon comprises an ICR which is marked by allele-specific histone

modifications, i.e., H3K9me3 and H4K20me3 on the inactive mater-

nal allele vs. H3K4me2 and acetylated H3K9 on the active paternal

allele.144 Of note, PEG10 provides a striking example of how retro-

transposon insertions contribute to evolution.145 Due to the sharing of

a common promoter, PEG10 and SGCE are often coexpressed, but in

some cases their expression diverges.146

The 7q21 cluster further contains the maternally expressed gene

tissue factor pathway inhibitor 2 (TFPI2). It is considered as a tumour

suppressor candidate, because it is silenced by genetic and epigenetic

aberrations in several types of cancer, including prostate cancer.147–150

TFPI2 and its non-imprinted homolog TFPI inhibit the coagulation-

initiating protease tissue factor. Besides its well-established role in

control of coagulation, it is a component of prostatic secretions con-

tributing to stroma remodelling and angiogenesis. In a previous study,

we investigated expression and methylation of TFPI2 and two further

reciprocally imprinted genes in the locus—the maternally expressed

paraoxonase 2 (PON2) and the paternally expressed SGCE.151

Whereas prostate cancer cell lines varied quite strongly in the expres-

sion of these genes, no significant differences were observed between

prostate cancer and adjacent normal tissues, with the exception of

PON2. Nevertheless, we observed a substantial variation of TFPI2

expression between different prostate cancer tissues. Moreover, the

TFPI2 promoter was found to be partially methylated in several sam-

ples with low gene expression. Repressive chromatin modifications

were more enriched in the weakly expressing LNCaP cell line with

low TFPI2 expression in comparison to the PC3 cell line with high

expression. Thus, TFPI2 might be prone to hypermethylation in pro-

state cancer. In contrast, the epigenetic status of the ICR did not

correlate with TFPI2 expression in the prostate cancer cell lines. We

concluded that epigenetic disturbances in the 7q21 cluster affect

imprinted genes in a non-coordinated manner, suggesting an unstable

epigenetic state prone to selection for specific expression changes.151

Our in silico analysis (Table 1) reveals that the expression of three

imprinted genes from the 7q21 locus differs significantly between

normal and cancer prostate tissues. Peculiarly, while the adjacent

paternally expressed PEG10 and SGCE genes were downregulated in

the majority of prostate cancer studies, PPP1R91A was upregulated.

Since the epigenetic state of the ICR seemed unchanged in our former

analysis,151 these expression changes might derive rather from gains

and losses at 7q21, as observed in other cancer types. This explanation

would also account for the lack of difference in SGCE expression in our

sample series, which contains a relatively low fraction of cases with 7q

alterations compared to other studies.152

PEG10 promotes embryonic growth and is overexpressed in several

malignancies including B-cell ALL and CLL, hepatocarcinoma and

Wilms tumour.153–155 In hepatocellular carcinoma (HCC), the 7q21

region was reported to be frequently amplified, which correlated with

overexpression of both PEG10 and SGCE.156,157 The oncogenic func-

tion of PEG10 might be mediated by several mechanisms. In HCC

cells PEG10 inhibited SIAH1-mediated apoptosis.154 In androgen-

dependent HCC cells, PEG10 expression was elevated upon treatment

with androgen and necessary for induction of hTERT.158 Ablation of

PEG10 by siRNA blocked the ability of DHT to enhance cell growth

and apoptotic resistance in HCC cells.158 Another inducer of PEG10 is

c-Myc.159 Furthermore, PEG10 can interfere with TGF-b signalling

through interaction with two of its receptors—the activin receptor-

like kinases ALK1 and ALK5. Moreover, the balance between these

receptors is known to be crucial in determining proliferation and

migration vs. quiescence of vascular endothelial cells during angiogen-

esis.160 Conceivably, this effect might also contribute to metastasis of

prostate cancer cells.

The SGCE gene encodes the protein sarcoglycan epsilon which is

part of a dystrophin—sarcoglycan complex in muscle and other tis-

sues, thought to functionally link the cytoskeleton to the extracellular

matrix.161 SGCE aberrations are implicated in intrauterine and post-

natal growth retardation. The inherited disease Myoclonic dystonia

characterized by irregular arrhythmic movements and behavioural

disorders is caused by SGCE mutations.162 As in prostate cancer,

SGCE is often downregulated in colorectal cancers, especially in cases

with microsatellite instability and its loss may favour a less invasive

phenotype.163

PPP1R9A encodes the protein phosphatase 1 regulatory (inhib-

itory) subunit 9a, also called neurabin I. It is an F-actin binding pro-

tein targeting protein phosphatase 1 to the actin cytoskeleton to limit

the activity of the growth regulatory kinases PKA and p70S6K.164

Therefore, neurabin I was proposed to regulate adhesion-dependent

signalling and function as a tumour suppressor.165

INPP5F

The INPP5F gene was recently shown to contain an imprinted tran-

script variant,166 coding for a phosphatidylinositol phosphatase which

limits the substrate for PI3K and phospholipase C that are activated by
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tyrosine kinase receptors. To some extent, therefore, the phosphati-

dylinositol phosphatases function in a similar way to PTEN. For

instance, INPP5F limits cardiomyocyte cell size and cardiac hyper-

trophy by inhibiting PI3K signalling during stress responses. PTEN

loss likewise favours cardiac hypertrophy.167 A homolog of INPP5F,

INPP4B, was recently found to be downregulated in prostate cancers.

INPP4B is induced by AR in prostate cancer cells and diminishes

phosphorylation of Akt.99 It is not known whether any of the

INPP5F transcripts is regulated in a similar manner. However, phos-

phatidylinositol phosphatases are expected to dampen signalling from

growth factor receptors like IGFR1 and EGFR in general. In particular,

they may act as feedback inhibitors in the interaction of PI3K/Akt and

AR signalling (Figure 2). Their potential as suppressors of develop-

ment of prostate cancer and especially castration resistance is evident.

CDKN1C

The maternally expressed gene CDKN1C is located in a second

imprinted gene cluster at 11p15.5 together with KCNQ, encoding an

ion channel protein, and other genes. CDKN1C codes for the protein

p57KIP2, a cyclin-dependent kinase inhibitor. It binds to various CDK-

cyclin heterodimers and at low concentrations promotes their assem-

bly, but at high concentrations abrogates the activity of CDKs 1, 2, 3, 4

and 6 leading to cell cycle arrest.168

Expression of p57KIP2 is high during embryogenesis, typically peak-

ing at key stages of differentiation for each organ, after which it

declines. In many developing tissues, particularly strong protein

expression can be observed at the interface between mesenchymal

and epithelial layers, perhaps corresponding to the sites where tis-

sue-specific stem cells are suspected to reside in stem cell niches.

These observations suggest a function of p57KIP2 in stem cell deter-

mination. Less speculatively, the protein is involved in regulating cell

cycle exit during differentiation of many tissues.168,169 In this function,

p57KIP2 cooperates with RB family proteins to inactivate E2F proteins

and induce G1 arrest and eventually a G0 state associated with terminal

differentiation. Chromatin immunoprecipitation revealed p57KIP2 to

be associated with E2F1-regulated promoters of genes crucial for DNA

synthesis, where the protein inhibits RNA polymerase CTD phosphor-

ylation and activity.170

Due to its growth-regulatory functions, CDKN1C has been studied

extensively in various human cancers and is generally considered a

tumour suppressor.171 Somewhat surprisingly, data on its role in pro-

state cancer are relatively limited. In cultured primary human normal

prostate epithelial cells, p57KIP2 has been implicated in the acquisition

of a senescent phenotype. Loss of the protein may be required for

immortalisation of prostate cells.172 Accordingly, CDKN1C was

shown to be a target of cancer-specific CpG hypermethylation in

56% of primary prostate cancer tissue samples. Promoter hyper-

methylation was also found in prostate cancer cell lines, where treat-

ment with the DNA methylation inhibitor 5-aza-deoxycytidine and

the histone deacetylase inhibitor trichostatin A significantly upregu-

lated CDKN1C mRNA levels.173 In contrast to other cancers, such as

urothelial carcinoma,174 allelic losses of CDKN1C at 11p15.5 are rare

in prostate cancer. Very likely, p57KIP2 provides an important barrier

to tumourigenesis in the prostate.

Aberrant methylation and histone modifications seem to dominate

as mechanisms of CDKN1C inactivation in many malignancies. In

breast cancer, EZH2 directly suppresses CDKN1C through H3K27

trimethylation.175 Likewise, restoration of the chromatin remodelling

factor SMARCB1, which is frequently inactivated in cancer, led to

CDKN1C upregulation via promoter histone H3 and H4 acetylation.

Factors like SMARCB1 are crucial for pRB-mediated repression of E2F

factors and their target genes.176 Another transcription factor regulat-

ing CDKN1C gene expression is ZAC1 (see below). Together, such

findings suggest that multiple regulatory mechanisms converge at the

CDKN1C gene to ensure adequate levels of p57KIP2 and that these may

be disrupted by multiple mechanisms in different cancers.

In paediatric cancers associated with BWS, CDKN1C suppression

involves loss of methylation at the differentially methylated ICR of the

11p15.5 imprinted gene cluster.65 This region contains the promoter

of the ncRNA KCNQ1OT1 (formerly named LIT-1) which is methy-

lated on the maternal allele. The ncRNA expressed from the paternal

allele antagonizes the expression of CDKN1C on the same allele (i.e.,

in cis) by recruiting Polycomb complexes and histone modifying

enzymes to the CDKN1C promoter and silencing its transcription.

Upon LOI with loss of maternal methylation of the ICR,

KCNQ1OT1 RNA is biallelically expressed, leading to silencing of

CDKN1C on both chromosomes. In the paediatric tumours, a con-

comitant overactivation of the more distant IGF2 locus is also often

observed. At least partial hypomethylation of the KCNQ1OT1 DMR

has also been observed in cancers of adults including hepatocellular

carcinoma and bladder cancer.174,177 It is not known yet whether it

also occurs in prostate cancer.

MEG3/GTL2, DLK1 AND THE 14Q32.2 IMPRINTED GENE

CLUSTER

The imprinted gene cluster on human chromosome 14q32.2 com-

prises protein coding genes like DLK1, RTL1 and DIO3, non-coding

RNA genes (MEG3/GTL2, RIAN and anti-RTL1) as well as genes for

micro- and small nucleolar RNAs.178 These genes have important roles

in embryogenesis and post-natal behaviour. In particular, they have

been implicated in regulation of stem-cell properties of embryonic

stem cells as well as cancer stem cells,179,180 especially the reciprocally

imprinted gene pair consisting of the paternally expressed DLK1 gene

and the maternally expressed non-coding RNA gene MEG3.181,182

The epigenetic regulation of the 14q32.2 cluster is similar to that of

the IGF2/H19 cluster on chromosome 11p15.5, where the promoter of

an ncRNA (H19) contains a DMR whose methylation status influences

the activity of a protein-coding gene (IGF2).183 In the DLK1/MEG3

cluster, the expression of MEG3 is dependent on the activity of the

DMR in its promoter. In mice, the epigenetic patterning and tran-

scriptional activity of the Meg3/Gtl2 promoter DMR together with a

neighbouring intergenic DMR has been demonstrated to regulate

the expression of paternally (Dlk1, Rtl1 and Dio3) and maternally

expressed genes (Mirg, Rian, anti-Rtl1, miR-127 and miR-410)

alike.184 Targeted deletion of the unmethylated maternally inherited

Meg3/Gtl2 DMR or the intergenic DMR resulted in loss of imprinting

across the entire cluster.184,185 Accordingly, hypermethylation of the

MEG3 DMR resulted in abnormal inactivation of DLK1 in human

renal cell carcinoma.186 The MEG3 ncRNA regulates expression of

the cluster in cis probably in a similar way as the lnc-RNA XIST

mediates X-chromosomal silencing, i.e., through recruitment of het-

erochromatin to RNA-coated regions. Furthermore, the MEG3 gene

hosts miRNAs that might also participate in silencing of transcripts

from the imprinted locus.

Apart from its regulatory functions in the 14q32.2 gene cluster,

MEG3 RNA may control cell proliferation by suppressing MDM2

and enhancing p16INK4A expression, thereby promoting activity of

p53 and RB1 respectively.187 The MEG3-encoded miRNAs likewise

have an established role in tumourigenesis. Furthermore, MEG3 func-

tions bear on the Notch pathway.
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Notch signalling is crucial for the development and homeostasis of

many tissues including the neural system, skeletal muscle, pituitary,

pancreas, gut and the prostate.188,189 Typically, the Notch pathway

regulates the size of the progenitor cell pool and its proliferative and

differentiation capacity. Active Notch signalling results in transloca-

tion of the C-terminal part of the receptor protein to the nucleus to

induce several target genes like HES1 and HEY1 capable of repressing

lineage-specific genes and controlling choices between alternative dif-

ferentiation pathways.

The best studied function of the paternally expressed DLK1 protein

also concerns Notch signalling. As originally discovered in Drosophila,

Dlk1 is a non-canonical Notch ligand capable of heterodimerizing

with the Notch1 receptor proteins without eliciting their activation.

Thereby, it limits Notch1 activation by canonical Jagged or delta

ligands in a competitive manner.190

In the mature human prostate, DLK1 was reported to be expressed

in some cells of the basal epithelial layer and in rarer neuroendocrine

cells. It has been speculated that these DLK1-positive basal cells may

represent a common prostate epithelial cell which has the potential to

give rise to neuroendocrine, basal and luminal epithelial cells.191

NOTCH1 and its ligand JAGGED1 are predominantly expressed in

the luminal cell layer, but since no NOTCH1 nuclear immunoreacti-

vity can be observed, it is unclear whether Notch signalling is active. In

cells at intermediate differentiation stages, DLK1 is lower and

NOTCH1 expression rises.191 This suggests that the balance between

NOTCH1 and DLK1 in prostate cells may be associated with epithelial

differentiation.

The Notch target gene HEY1 is especially interesting in the context

of prostate cancer, as it acts as an AR corepressor. Ceder et al.191

therefore proposed a dual role of Notch signalling in the human pro-

state. On the one hand, it may allow early luminal commitment by

inhibition of neuroendocrine differentiation, by downregulating

DLK1 and by upregulating HES1. On the other hand, Notch signalling

may interfere with AR-regulated transcription through HEY1 to

inhibit luminal differentiation.192 The authors suggest that Notch

activity becomes downregulated as cells terminally differentiate.

Notch signalling contributes to the development of cancers in sev-

eral tissues,193 but its role in prostate cancer is unclear. According to

one study, prostate tumour foci exhibited fewer cleaved NOTCH1 as

compared with surrounding benign tissue and lower HEY1.194 In

other studies, NOTCH1 and JAGGED1 were reported to be overex-

pressed in metastatic cancers.195–197 It has therefore been suggested

that not expression of NOTCH1 protein as such but its activation

status may be essential for the onset and maintenance of prostate

cancer.

The proposed downregulation of HEY1 in prostate cancers194 may

relieve repression of the androgen receptor allowing increased cancer

cell growth in the presence of androgen as well as under castration

conditions.198 In contrast, the other Notch-induced transcriptional

repressor HES1 might favour cancer development through binding

and repression of the PTEN promoter.199 In this fashion Notch activity

could enhance PI3K/Akt signalling. Therefore, the effects of active

Notch signalling in prostate cancer, if it occurs, might be strongly

context-dependent. In any case, the expression level and distribution

of DLK1, which is expected to depend on MEG3, would be crucial.

NDN

Necdin is the product of the paternally expressed NDN gene from the

melanoma antigen family that is lost in Prader–Willi syndrome, a

hereditary imprinting disease characterized by mental retardation,

hypogonadism and obesity.200,201 Numerous studies suggest major

functions of necdin in regulating cell cycle and differentiation. It con-

tributes to myogenic and neuronal differentiation and survival, while

inhibiting adipogenic programs. In order to promote myogenic differ-

entiation, necdin acts as a transcriptional repressor silencing adipogenic

differentiation genes like PPARG and DLK1.202 Similar to the pRB1

protein, necdin interacts with cell cycle factors like E2F1 and E2F4,

resulting in suppression of proliferation and terminal differenti-

ation.203,204 A particular intriguing facet of necdin repressor activity is

its interaction with hnRNP-U in a specific nuclear compartment, where

it might be involved in maintaining a higher order chromatin structure,

suppressing the transcriptional activity of colocalized cell cycle regula-

tors.205 The pro-survival function of necdin is exerted at least in part

through attenuation of p53. The protein interacts with SIRT1 and p53

to potentiate p53 deacetylation by SIRT1.206 In summary, necdin, on

the one hand, has a potential to function as a tumour suppressor by

inhibiting the cell cycle, but on the other hand, it might promote cell

survival during stress by its attenuating effect on p53.207 The function of

necdin in the prostate and in human cancers is poorly studied.

PEG3

Paternally expressed gene 3 (PEG3), also known as zinc finger

imprinted domain 2 (ZIM2), is situated on chromosome 19q13.4

and is paternally expressed. A CpG island within the gene is methy-

lated on the maternal chromosome and participates in its silencing

in cis. This DMR contains tandem binding sites for the Polycomb-

interacting protein YY1, which binds to the unmethylated paternal

allele. This constellation suggests an important role of DNA methyla-

tion and Polycomb-dependent histone modifications in the regulation

of PEG3 imprinting and expression.208 In glioma, ovarian and other

gynaecological cancers, PEG3 was found to be silenced by DNA hyper-

methylation of the DMR, which could be relieved by demethylating

drugs, especially in combination with a histone deacetylase inhib-

itor.209–213 Interestingly, the methylation of the intragenic PEG3

DMR correlated also with the expression of the neighbouring ITUP1

gene oriented head-to-head to PEG3.214

The PEG3 gene product is a Krüppel-type zinc finger protein. High

levels of PEG3 are detected during embryo development and in the

placenta. In the adult, it remains mainly expressed in the ovary, testis,

muscle and brain, characterizing in particular adult stem and progen-

itor cell populations.215 Like other imprinted genes, PEG3 affects

metabolic set-up. It regulates hypothalamic circuits that program

energy homeostasis, and thereby growth and development of the

entire body, evident from the phenotype of knockout mice.216

Various studies in mice and men show its role in neuronal develop-

ment, parental and sexual behaviour, as well as in muscle development

and homeostasis.

Although growth promoting in the embryo, in the adult PEG3

is suspected to have a tumour suppressor function that may be

exerted by interactions with several pathways regulating cell pro-

liferation and apoptosis. In cortical neurons Peg3 was upreg-

ulated after DNA damage in a p53-dependent manner, mediating

between p53 and Bax in the induction of cell death.217 Over-

expression of PEG3 and SIAH1 induced apoptosis independently of

p53.218 PEG3 also promoted TNF/TNFR-dependent apoptosis by

interaction with TRAF2.219

PEG3 moreover limits the activity of the canonical WNT pathway,

in particular by decreasing b-catenin levels. Inhibition of PEG3 expres-

sion led to enhanced b-catenin expression, inhibited p53-dependent

apoptosis and promoted proliferation in human glioma stem cells.220
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This function of PEG3 might be particularly pertinent to prostate

cancer, as deregulation of the WNT/b-catenin pathway is thought to

contribute to prostate cancer progression, prominently by influencing

AR signalling.221–226

Through its involvement in major important pro-apoptotic path-

ways and its participation in the control and fine tuning of WNT

signalling which impacts on androgen responses, PEG3 may serve to

maintain the homeostasis in the normal prostate. Therefore, the strong

tendency towards downregulated PEG3 expression in prostate cancer

indicated by our in silico analysis might indicate a major function in

suppressing cancer development. However, so far no direct evidence

for its functional significance in prostate cancer has been reported.

Moreover, compared to the tissues with the highest levels in the ovary,

placenta, adrenal and pituitary glands PEG3 levels in human prostate

tissues are relatively low. An early study reported downregulation of

PEG3 mRNA by androgen treatment in LNCaP cells and expression

could be detected neither in the androgen-responsive MDA-PCA-2

prostate cancer cell lines nor the poorly differentiated androgen-inde-

pendent cell lines PC-3 and DU145. While the authors concluded that

both androgens and loss of differentiation may affect PEG3 expression

in the prostate,227 this remains to be ascertained in tissue samples and

any consequences need to be elucidated further.

GNAS

The extremely complex GNAS locus is situated at chromosome

20q13.11 and codes for a variety of alternative transcripts with par-

ental-of-origin-dependent expression. Best characterized are the pro-

tein-coding GNAS (Gsa) and its variants GNASXL (XL-Gsa) and

NESP55, and the non-coding NESP55as, and Exon 1A. Although most

of the transcripts share exons 2-13 of the Gsa transcript, their function,

especially of the non-coding transcripts, may be to antagonize Gsa

(XLsa) and to ensure its tissue-specific imprinted expression.228–230

Three DMRs control the monoallelic expression of the transcripts in

the GNAS locus. Differential histone modifications, too, are involved

in regulating its imprinting.231 In addition, remote cis-acting elements

have been suggested to impact on imprinted expression. For a detailed

review of GNAS locus regulation refer to ref.232.

Gsa is a guanine nucleotide binding heterotrimeric G-protein sti-

mulatory subunit that activates adenylate cyclase in response to ligand

binding to G-protein coupled receptors. It functions in signal trans-

duction from hormone and growth factor receptors to induce cyclic

AMP, protein kinase A activity and activation of cAMP-responsive

genes through the transcription factor CREBBP. This signalling directs

metabolic processes like glycogenolysis and lipolysis, but also secretion

or cell survival. In particular, Gsa/cAMP signalling is involved in the

stimulation of many endocrine glands by trophic hormones.230,233,234

Very likely, the complex regulation of the GNAS gene reflects the

requirement to achieve a precise setting of energy metabolism.

This conclusion is underlined by the highly tissue-specific imprint-

ing pattern of GNAS. Its expression is biallelic in most tissues, but

silenced on the paternal allele in specific hormone-secretory or hor-

mone-responsive tissues like the kidney, anterior pituitary, thyroid

and ovary. In these tissues, cAMP acts as a growth factor for endocrine

cells, and Gsa overactivation is often oncogenic.235 Accordingly, activ-

ating mutations of GNAS, which alter key residues required for its

GTPase activity, are found in kidney, thyroid, pituitary, adenocortical

and colorectal tumours, bone fibrous dysplasia and in patients

with McCune-Albright syndrome.236 In these diseases, the activating

mutations cause overactivity of Gsa, XLsa and adenylate cyclase, result-

ing in autonomous synthesis of cAMP and constitutive activation of

PKA and its downstream pathways.235 GNAS gene amplification and

overexpression have been found and may be relevant in ovarian and

colorectal cancers.237,238

Relaxed imprinting of GNAS locus and biallelic Gsa expression may

constitute further mechanisms for oncogenic activation in secretory

organs like the pituitary, thyroid and ovary, as observed, e.g., in pitu-

itary tumours.239 Mutations in exon 1 inactivate Gsa but do not affect

XLsa and NESP55 and may cause haploinsufficiency in tissues that

express Gsa biallelically, and complete insufficiency in tissues with

monoallelic expression. Maternally inherited mutations of this kind

cause resistance to PTH, TSH and gonadotropins in their target organs

(kidney, thyroid and ovaries) in addition to the bone growth defects of

Albright hereditary osteodystrophy patients. Paternal transmission of

the mutations, in contrast, does not cause hormonal resistance.233

Polymorphisms constitute a further factor to be considered in

GNAS physiological and oncogenic functions. Homozygosity for the

GNAS T393C polymorphism, which correlated with increased Gsa

levels, was linked to a more favourable clinical course in bladder

and colorectal cancer, as compared to patients with TC or CC geno-

types.240,241 Similarly, in clear cell renal cell carcinoma and gastric

cancer,242 homozygous CC patients were found to be at highest risk

for progression.242,243 In prostate cancer, no effect of this polymor-

phism could be found.244

In view of the involvement of GNAS in endocrine regulation and

many human cancers, it is surprising that the gene has hardly been

studied yet in prostate cancer. The results of our bioinformatic ana-

lysis, with 11 studies reporting significant upregulation, clearly call for

a study of GNAS expression, mutation and function in prostate can-

cer, even though this would have to detailed, given the complex regu-

lation of the locus.

DCN

The product of the DCN gene, decorin (also known as PG-40), is a

proteoglycan secreted by mesenchymal cells into the extracellular

matrix, where it regulates growth factor signalling and receptor tyr-

osine kinase activity. In this fashion, it influences signalling by IGFs,

EGF-like growth factors and TGF-b.

Altered expression of decorin has been linked to ageing and carci-

nogenesis in various organs. DCN was reported to be hypomethyated

and overexpressed in the stroma of human colon carcinoma.245 In the

Tiensin Albino 2 mouse, which develops spontaneous breast cancer,

Dcn along with Igf2, Mest, Ndn and Peg3 is differentially expressed

between normal mammary gland and cancer tissues. The decrease in

decorin is supposed to contribute to carcinogenesis in the mammary

gland via increased EGFR signalling.246 In human breast tissues, dec-

orin accumulation was observed in areas of increased mammographic

density and malignant-appearing microcalcifications, and was asso-

ciated with in situ carcinomas.247 Decorin together with other small

leucine-rich proteoglycans was proposed to be involved in the regu-

lation of inflammatory and fibrotic renal disorders.248 Taken together,

these studies suggest a major function of decorin in the remodelling

and regeneration of inflamed and ageing tissues that might be highly

pertinent to benign and malignant tumours in the prostate.

Indeed, decorin blocked AR nuclear translocation and decreased

prostate-specific antigen levels in the androgen-dependent LNCaP cell

line. Importantly, decorin inhibited the growth of both androgen-

dependent and androgen–independent prostate tumour cells by sup-

pressing signalling by EGFR, PI3K-Akt and the androgen receptor.249

In mouse prostates, decorin inhibited PI3K and Akt phosphorylation

even after PTEN knockout. Downregulation of decorin has been
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reported during the transition from high-grade prostatic intraepithe-

lial neoplasia to invasive carcinoma.250 Together, these properties

suggest an ability of decorin to function as a tumour suppressor in

the human prostate by influencing the crucial interacting PI3K/Akt

and androgen response pathways.

CONCLUSIONS

In this final section, we will summarize the implications of our data

mining and literature survey and draw some tentative conclusions as

working hypotheses for further investigations.

The first conclusion from our analysis is evident. Despite the extensive

epigenetic changes associated with the initiation and progression of

prostate cancer, most imprinted genes remain stably regulated. In par-

ticular, there is surprisingly little evidence for LOI, apart from the IGF2/

H19 locus. Notably, the changes altering the imprinted state at this locus

are most likely early events in prostate carcinogenesis that precede dereg-

ulation of global DNA methylation patterns and histone modifications.

In particular, IGF2 deregulation appears to be involved in the field effect

evident in cancerous prostates that manifests in changes in gene express-

ion and DNA methylation.251 There is so far little evidence that changes

in the actual imprinting mechanism are responsible for altered express-

ion of other imprinted genes in prostate cancer. At the 7q21 cluster and

to a lesser extent at the 6q PLAGL1/HYMAI locus, chromosomal gains

and losses may contribute to deregulation. At TFPI2 and CDKN1C,

promoter hypermethylation has been observed,151,173 but the state of

the corresponding ICR is rather unchanged (in the former case) or

has not been investigated yet (in the latter case).

The second conclusion is that the changes in the expression of

imprinted genes in prostate are strongly selected for by their function.

A large fraction of those that are deregulated have functions related

to PI3K/Akt signalling and androgen response, which interact in

the development and progression of prostate cancer to CRPC.

Additionally, there is preliminary evidence that other pathways,

including WNT and Notch signalling, could be influenced by altered

expression of individual imprinted genes (Figure 3). This relationship

is not incidental, since the regulation of foetal growth and the estab-

lishment of set points for endocrine regulation are key functions of

imprinted genes during development. In that context, they influence

some of the same pathways that are relevant for prostate carcinogen-

esis and development. Regulation of the involved imprinted genes may

be as critical in prostate carcinogenesis.

Thirdly, the imprinted genes controlling foetal growth in this fashion

are linked with each other in a tight network (Figure 1). Thus, they do

not only exert common functions, but are also subject to common

regulatory mechanisms. In particular, some of the gene products of this

network serve as hubs by regulating many other genes and the overall

activity of the network. ZAC1 and MEG3 are prime candidates for such

a hub function and H19 in some instances may play a similar role. This

means that deregulation of hub genes in prostate cancer may spread

through the network (Figure 1) and lead to coordinated changes as

during embryonic development. Notably, such coordinated changes

can also occur during regenerative processes in adult organs.155,252,253

In embryonic development and during tissue regeneration, the

function of the network resides in controlling the extent of cell growth

and proliferation as well as the expansion of progenitor cell compart-

ments. In brief, the network is first activated to aid in the growth phase

of tissues and ensures its transition to a stable and final size, where-

upon the network genes are downregulated. In analogy, one might

speculate that during prostate cancer development, activation of the

network may occur at an early stage of carcinogenesis, but would be

selected against once it begins to limit the tumour progression. This

argument is supported by the observation that CDKN1C, which

encodes one of the strongest antiproliferative proteins in the network,

is most consistently downregulated in prostate cancer.

Of note, apart from coordinated regulation in the imprinted gene

network, overexpression or downregulation of imprinted genes may

occur in normal and neoplastic tissues by mechanisms unrelated to

imprinting, e.g., by tissue-specific transcription factors or as a con-

sequence of responses to hypoxia, stress or infection. To give a few

examples, expression of CDKN1C is highly tissue-specific, although

the factors involved are not well characterized.168 Overexpression of

IGF2 in some cancers is associated with a switch to a different pro-

moter.254 H19 is upregulated by hypoxic stress dependent on the p53

status.117 PLAGL1 is induced upon TLR3 activation during virus

infection.255 Certain chemical mutagens change the expression level

of the imprinted genes SNRPN, PEG3, NDN and ZAC1.256

Finally, several imprinted genes subject to altered expression in

prostate cancer have been postulated to regulate stem cell and pre-

cursor population. Obviously, since expression analyses by microar-

rays or quantitative PCR measure mRNA levels across tissue samples,

neither our in silico bio-informatic analysis nor the published data

from the literature can reveal the expression status of such imprinted

genes in subpopulations of epithelial cells in the normal prostate or in

prostate cancer. Clearly, their expression and function needs to be

considered in the context of cellular hierarchies. Unfortunately, the

issue of cancer stem cells in normal and cancerous prostate is highly

controversial (see Ref. 257 for a balanced account). However, a few

points might be considered.

In the adult, imprinted genes are expressed at low levels and are

thought to be mostly restricted to progenitor cell populations.

Upregulation of imprinted genes with growth-promoting functions

during organ regeneration might therefore be accounted for by the

expansion of progenitor cells.258 Furthermore, a similar overexpression

of imprinted genes is reported during immortalisation of cells and to

contribute to their clonal expansion.259 Deregulation of imprinted

genes in progenitor cells could therefore affect not only their number

and their response to the microenvironment, but also their ability to

give rise to correctly differentiated progeny. Such considerations

underlie the theory of the epigenetically disrupted progenitor cells

Figure 3. An overview of signalling pathways and cellular regulatory systems

influenced by and acting upon imprinted genes with altered expression in pro-

state cancer.
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from which tumours may arise.258 According to this theory, epigenetic

events perturb the regulation of precursor cells, creating a population

of ‘neoplasia-ready cells’ from which cancer originates. These cells

would be present as well in morphologically normal tissue and explain

the broader distribution of epigenetic changes in many neoplastic

organs.258 In prostate carcinogenesis, changes at the IGF2/H19 locus

may reflect this situation. Interestingly, it has been postulated that

microenvironmental influences like cytokines and growth factors

secreted during infection or altered hormone homeostasis provide

the milieu that causes LOI in tissue-resident stem cells.260

Accordingly, increased levels of IGF2 have been postulated to cause

cancer by increasing the progenitor cell population in tumours.261

In summary, thus, we may propose the following model to account

for the specificity of changes in imprinted gene expression in prostate

cancer (Figure 4). Changes in IGF2 imprinting might be caused by

micro-environmental changes in the ageing prostate and consequently

contribute to the emergence of a tumourigenic precursor population.

Genetic changes such as ERG translocations and certain chromosomal

losses and gains may contribute to the establishment of that population8

or may follow. Certainly, they are required for the emergence of invasive

cancers. These genetic changes along with epigenetic alterations elicit

changes in the growth factor/PI3K/androgen response axis that are

crucial for tumour growth and progression. In response to the expan-

sion of the precursor cell pool or the activation of growth-stimulating

signals, the imprinted gene network controlling tissue growth becomes

activated and becomes subject to selection against its effects that limit

proliferation and drive differentiation. This selection appears to result

in the specific inactivation of individual genes that act as effectors or

hubs within the network, eliciting broader changes in expression.
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