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Abstract

Chromosome abnormalities are one of the major causes of human infertility.  In infertile males, abnormal karyo-
types are more frequent than in the general population.  Furthermore, meiotic disorders affecting the germ cell-line
have been observed in men with normal somatic karyotypes consulting for infertility.  In both cases, the production
of unbalanced spermatozoa has been demonstrated.  Basically addressed to establish reproductive risks, fluorescence
in situ hybridization (FISH) on decondensed sperm heads has become the most frequently used method to evaluate
the chromosomal constitution of spermatozoa in carriers of numerical sex chromosome abnormalities, carriers of
structural chromosome reorganizations and infertile males with normal karyotype.  The aim of this review is to
present updated figures of the information obtained through sperm FISH studies with an emphasis on its clinical
significance.  Furthermore, the incorporation of novel FISH-based techniques (Multiplex-FISH; Multi-FISH) in male
infertility studies is also discussed.  (Asian J Androl 2005 Sep; 7: 227–236)
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1    Introduction

Genetic abnormalities have long been accepted as an
important cause of human infertility and are suspected
to be present in 30 % of the patients consulting for fertil-
ity problems [1].  As a consequence, genetic studies,
either cytogenetic or addressed to the detection of spe-
cific gene mutations, have been incorporated in most
male infertility screening protocols, and are of great
importance for the affected couples seeking reproduc-

tive counseling.
Focusing on cytogenetic studies, a study of the karyo-

type is usually included in the basic clinical evaluation.
The high incidence of constitutional chromosomal ab-
normalities in infertile patients in relation to the general
population [2–4] justifies its application and allows the
diagnosis of approximately 7 % of the cases of male in-
fertility [3].  On the other hand, meiotic cytogenetic stud-
ies directed towards the detection of abnormalities, which
exclusively affect the germinal line, not detectable through
the study of the somatic karyotype and performed through
the analysis of testicular tissue, are less commonly
requested.  However, it has been shown that approxi-
mately 6 % of the patients with a normal somatic karyo-
type who seek advice for infertility present meiotic alter-
ations in their spermatogenic cells [5].  During the last
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years, probably because of the use of testicular material
for assisted reproductive techniques, meiotic studies have
recovered their deserved space in the diagnosis of hu-
man male infertility.  Substantial information has been
derived from more recent reports, showing meiotic ab-
normalities in 17.5 % of males with severe oligoasthenoz
oospermia [6] and that this figure can increase up to
27 % in normozoospermic patients with one or more
previous IVF failures [7].

As mentioned, chromosomal abnormalities (either
constitutional or limited to the germ cell line) interfere
with gametogenesis and may result in the production of
gametes with chromosomal abnormalities that, in turn,
increase the risk of affected offspring.

With the introduction of fluorescent in situ hybrid-
ization (FISH) techniques, the possibilities of analysis of
male germ cells are notably increased.  In this context,
FISH studies in spermatozoa were promptly incorporated
into the study of infertile patients [8–12].  The applica-
tion of combinations of DNA probes appropriate for each
specific study, preceded by a protocol of spermatic chro-
matin decondensation, allows to obtain reliable data on
the frequency of chromosomal abnormalities in the sper-
matozoa and valuable information for guiding reproduc-
tive counseling in each case.

Furthermore, with the objective of obtaining more
detailed cytogenetic information of the whole spermato-
genic process (spermatogonia, primary and secondary
spermatocytes, spermatids and spermatozoa), the com-
bination of different FISH-based techniques on testicu-
lar tissue can also be used [13].  Analyses by means of
Multiplex-FISH (M-FISH), using DNA probes directly
labeled with a combination of five different fluorochromes,
thus allowing the obtention of 24 different color patterns
and making possible the identification of all chromosomes
in metaphase I and metaphase II cells, are especially prom-
ising [14].

This paper reviews the results obtained from the ap-
plication of FISH methodologies in the cytogenetic char-
acterization of spermatogenesis in three groups of
individuals: 1) carriers of numerical abnormalities for the
sex chromosomes; 2) carriers of structural chromosomal
abnormalities; and 3) infertile individuals with a normal
karyotype.

The behavior of the chromosomes involved in the
abnormalities throughout the meiotic process, the risk of
transmission to the offspring and the possible implica-
tions in reproductive counseling in each group will be

detailed.

2    Carriers of numerical sex chromosome abnor-
malities

Carriers of sex chromosome abnormalities are fre-
quently seen in andrology services and fertility clinics.
Sperm FISH studies carried out in these patients show
an increase in the incidence of sex chromosome disomies
(Table 1).

In apparently non-mosaic Klinefelter individuals, the
average incidence of disomies for sex chromosomes is
6.29 % (range 1.36 %–25 %), while in 46,XY/47,XXY
mosaics it is 2.54 % (range 0 %–7 %) (Table 1).  Sperm
FISH studies in 47,XYY individuals show that 3.74 %
(range 0.11 %–14.36 %) of the spermatozoa analyzed
(Table 2) are carriers of an extra sex chromosome.

The mechanisms by which these increases are pro-
duced are not well known yet.  Although the early stud-
ies suggested the possible entry of the XXY aneuploid
line in meiosis [36, 37], more recent studies indicate that
these cells cannot enter the meiotic process [26, 38].  In
these individuals, the observed increase of disomies could
be justified by an abnormal testicular micro-environment,
probably related to an increase of FSH, which would
affect chromosomal segregation in a euploid 46,XY cell
line.  In 47,XYY individuals, although some studies sug-
gested that the extra Y might be lost in the early stages of
spermatogenesis [39–43], other studies [26, 30, 44] have
shown it clear the capacity of some aneuploid cells to
initiate and complete meiosis, producing aneuploid
gametes.

Due to the relatively low frequency of disomic sper-
matozoa observed and the clinical features of numerical
sex chromosome syndromes, some authors debated on
performing routine sperm FISH analysis in these indi-
viduals [45, 46].  In our opinion, the variability shown
by the different studies (Tables 1 and 2) indicates the
need for the individualized analysis for each particular
case.  For example, according to the results of the stud-
ies shown in Table 1, it is evident that in a 47,XXY pa-
tient with an incidence of 21.71 % of disomies for the
sex chromosomes [18], reproductive counseling will be
quite different from that of another individual, also char-
acterized as non-mosaic Klinefelter, but with a much
lower disomy incidence (1.36 %) [22].

3    Carriers of structural chromosomal abnormali-
ties
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The development of locus specific and subtelomeric
DNA probes has allowed the analysis of chromosome
segregation in carriers of inversions (pericentric and
paracentric), Robertsonian translocations and reciprocal

translocations.  These studies confirmed that carriers of
structural chromosomal reorganizations produce, to a
greater or a lesser extent, chromosomally unbalanced
spermatozoa depending on the characteristics of the re-
organization (Tables 3, 4 and 5).  If these gametes fertil-
ize an oocyte, the resulting embryos, depending on the
chromosome regions implicated, can give rise to abor-
tions or offspring affected by chromosomal abnormalities.

In patients, carriers of pericentric inversions, the fre-
quencies of abnormal spermatozoa vary in function of
the size of the inverted region, ranging between 0.67 %
and 54.30 % (Table 3).  For carriers of Robertsonian tr-
anslocations, unbalanced spermatozoa range is between
7 % and 36 % (Table 4), and the range is between 29.37 %
and 70.20 % in carriers of reciprocal translocations (Table
5).  Among the different factors which condition chro-
mosome segregation, the chromosomes involved in the
reorganization and the characteristics of the reorganized
regions (such as the location of the breakpoints involved
in the rearrangement) seem to be especially important.

Furthermore, the presence of structural reorganiza-
tions may produce an interchromosomal effect (ICE),
characterized by the abnormal behavior of one or more
bivalents not involved in the reorganization, which could
give rise to abnormal spermatozoa for these chromosomes.
In this sense, diverse FISH studies where this phenom-

Table 1. Percentage of chromosomal abnormalities in spermatozoa of Klinefelter’s syndrome patients. aNo statistical analysis has been
performed; bstatistically significant vs internal controls.
    Reference               Authors                         Karyotype                 XY               XX               YY        Diploid

15 Chevret et al. (1996) 46,XY/47,XXY   2.09b 0.11 0.003 0.33
16 Martini et al. (1996)a 46,XY/47,XXY   1.30 0.5 0.7   –
17 Guttenbach et al. (1997) 47,XXY   1.36b 1.22b 0.09 0.23b

18 Foresta et al. (1998) 47,XXY 14.58b 6.92 0.21 0.05
47,XXY 10.03b 3.34 0.09 0.03

19 Kruse et al. (1998)a 46,XY/47,XXY/48XXXY   5 2   –   –
20 Estop et al. (1998)a 47,XXY 25b   –   – 4.2b

21 Lim et al. (1999) 46,XY/47,XXY   0.41b 0.29b 0.06 1.70b

22 Rives et al. (2000) 47,XXY   0.54b 0.45b 0.37b 0.23b

46,XY/47,XXY   0.62b 0.24b 0.20 0.36b

23 Morel et al. (2000) 46,XY/47,XXY   1.3b 0.71b   – 0.24b

46,XY/47,XXY   1.73b 0.86b 0.86b 0.25b

24 Levron et al. (2000)a 47,XXY (5)   0.89 1.79 0.89   –
25 Bielanska et al. (2000)a 46,XY/47,XXY   2.23 1.12 0.56 0.84
26 Blanco et al. (2001) 47,XXY   1.37b   –   – 1.37b

46,XY/47,XXY     –   –   –   –

Table 2. Percentage of chromosomal abnormalities in spermatozoa
o f  4 7 ,X Y Y  p a t i e n t s . 

a No statistical analysis has been performed;
b statistically significant vs internal controls.

Reference Authors XY XX YY   Diploid
27 Han et al. (1994) 0.25 0.30 0.40 3.35b

28 Mercier et al. (1996) 9.37b 0.34 4.65b 0.11
16 Martini et al. (1996)a 2.30 2 0.80   –

5.40 2.70 2.30   –
29 Chevret et al. (1997) 0.24 0.02 0.08b 0.23b

0.52   – 0.19b 0.13b

30 Blanco et al. (1997) 0.30b 0.15 1.01b 0.30
31 Mennicke et al. (1997)a 0.80 0.70 0.50   –

1 1.2 1   –
3.11 0.31 1.02 0.08

32 Martin et al. (1999) 0.55b 0.08 0.03 0.12
33 Morel et al. (1999)a 3.01 1 1.64 0.15
34 Shi and Martin (2000) 0.44b 0.05 0.07b 0.33
26 Blanco et al. (2001) 0.11   –   – 0.44
35 Rives et al. (2003) 3.41b 0.54b 1.23b 1.49b

0.83b 2.20b 1.65b 1.38b



.230.

Germ cell chromosome abnormalities

enon has been evaluated show a positive ICE in 38.46 %
of the studied Robertsonian translocations (Table 4), and
approximately 34.5 % in reciprocal translocations (Table 5).

Sperm FISH studies in structural chromosome reor-
ganization carriers allow to infer the meiotic behavior of
the rearranged chromosomes and the final outcome in
spermatozoa.  However, the importance of improving

our knowledge of the meiotic process in these individu-
als has led to the application of M-FISH techniques for
an in-depth cytogenetic analysis, thus allowing the evalua-
tion of all bivalents or multivalents in metaphase I, making
it possible to analyze the meiotic configuration of the chro-
mosomes involved in a given reorganization and to evaluate
the occurrence of interchromosomal effects [14, 77].

Reference Authors Inversion  unbalanced (%)
47 Jaarola et al. (1998) inv(1)(p31q12) 0.67

inv(8)(p23q22) 13.7
48 Anton et al. (2002) inv(6)(p23q25) 54.3
49 Yakut et al. (2003) inv(1)(p36q32) 17.5
50 Mikhaail-Philips et al. (2004) inv(2)(p23q33) 44.1

Table 3. Percentage of chromosomally abnormal spermatozoa in carriers of pericentric inversions.

 N/B (Alt)                    A/U(Adj)

Table 4. Results of segregation and interchromosomal effect (ICE) in carriers of Robertsonian translocations. N/B: normal/balanced; A/U:
abnormal/unbalanced; Alt = alternate; Adj = adjacent; ne = not evaluated.

51 Rousseaux et al. (1995) t(14q;21q) 72.20 18.01 +
31 Mennicke et al. (1997) t(21q;22q) 60 36 ne
52 Honda et al. (2000) t(14q;21q) 88.42 11.25 ne
53 Escudero et al. (2000) t(13q;14q) 73.60 23.30 ne

t(13q;14q) 77.40 19.10 ne
54 Blanco et al. (2000) t(13q;22q) ne ne –
55 Morel et al. (2001) t(13q;14q) 81.34 18.06 +

t(13q;14q) 82.60 16.32 +
t(13q;14q) 88.90 10.08 –

56 Frydman et al. (2001) t(13q;14q) 91 9 ne
t(13q;14q) 90 10 ne
t(13q;14q) 87.10 12.90 ne
t(14q;21q) 91.30   8.70 ne
t(14q;21q) 92.80   7.20 ne
t(14q;21q) 93 7 ne

57 Acar et al. (2002) t(21q;21q) ne ne –
58 Anton et al. (2004) t(13q;14q) 86.48 12.56 –

t(13q;14q) 87.49 12.17 –
t(13q;14q) 83 14.53 +
t(13q;14q) 84.53 14.17 –
t(13q;14q) 88.13 11.40 –
t(13q;14q) 88.23 11.11 +
t(13q;14q) 87.73 11.63 –

        Reference                        Authors                 Translocation                              Type of segregation                     ICE



Asian J Androl 2005; 7 (3): 227–236

.231.

Table 5. Results of segregation and interchromosomal effect (ICE) in carriers of reciprocal translocations. N/B = normal/balanced; A/U =
abnormal/unbalanced; Alt = alternate; Adj = adjacent; ne = not evaluated.

59 Lu et al. (1994) t(2;4;8)(q23;q27;p21)    ne    ne –
60 Rousseaux et al. (1995) t(6;11)(q14;p14)    ne    ne +

t(6;11)(q14;p14)    ne    ne +
t(2;14)(p23.1;q31)    ne    ne +

61 Van Hummelen et al. (1997) t(1;10)(p22.1;q22.3) 48.09 51 –
62 Blanco et al. (1998) t(5;8)(q33;q13) 45.12 51.84 –
63 Estop et al. (1998) t(2;18)p21;q11.2) 43.60 53.10 ne

t(8;9)(q24.2;q32) 44.40 53.50 ne
64 Martini et al. (1998) t(3;11)(q27.3;q24.3) 44.30 51.40 –
65 Estop et al. (1999) t(11;22)(q23;q11) 27.40 70.20 ne
66 Cifuentes et al. (1999) t(5;7)(q21;q32) 49.70 50.30 –
67 Honda et al. (1999) t(3;9)(q26.2;q32) 52.49 47.24 –

t(3;9)(p25;q32) 47.25 52.48 –
68 Giltay et al. (1999) t(Y;16)(q11.21;q24) 51 48 –
54 Blanco et al. (2000) t(3;15)(p25;q15)    ne    ne +

t(Y;7)(q13;p11)    ne    ne –
69 Estop et al. (2000) t(10;12)(p26.1;p13.3)    ne    ne –

t(2;18)(p21;q11.2)    ne    ne –
t(3;19)(p25;q12)    ne    ne –
t(11;22)(q23;q11)    ne    ne –
t(3;4)(p25;p16)    ne    ne –
t(8;9)(q24.2;q32)    ne    ne –
t(10;18)(q24.1;p11.2)    ne    ne –
t(4;10)(q33;p12.2)    ne    ne –

70 Morel et al. (2001) t(X;Y)(p22.3;q11)    ne    ne +
71 Oliver-Bonet et al. (2001) t(4;8)(q28;p23) 30.5 68.50 +
72 Geneix et al. (2002) t(17;22)(q11;q12) 19 65.50 ne
73 Oliver-Bonet et al. (2002) t(1;13)(q41;q22) 41.6 58.40 –

t(3;19)(p21;p13.3) 39.1 60.90 +
74 Rives et al. (2003) t(9;10)(q11;p11.1) 56.25 43.74 –
75 Baccetti et al. (2003) t(10;15)(q26;q12) 32.8 65.80 +
76 Morel et al. (2004) t(7;8)(q11.21;cen) 56.7 43.26 +

t(7;8)(q11.21;cen) 62.84 36.88 +

   Reference               Authors                            Translocation                                  Type of segregation                         ICE

 N/B (Alt)       A/U(Adj I + Adj II + 3:1)

In summary, the combination of meiotic studies and
cytogenetic sperm analysis can help to better establish
appropriate reproductive advice for these patients.  The
variability observed in the studies reported from individual
carriers of inversions (Table 3) and from carriers of
Robertsonian and reciprocal translocations (Tables 4 and
5) recommends that an exhaustive study could be car-
ried out in infertile men to facilitate the subsequent appli-

cation of the most appropriate reproductive strategy.

4    Infertile individuals with a normal karyotype

The majority of infertile individuals have a normal
somatic karyotype, but show altered semenograms
frequently.  Furthermore, it has been reported that the
frequencies of aneuploid and diploid sperm present in a
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given semen sample are directly related to the reduction
in the number and progressive motility of sperm [6,10],
high levels of FSH [6] and previous IVF failures in the
case of normozoospermic patients [7].

In normal individuals disomies are around 0.1 % for
most autosomes and 0.3 % for chromosome 21 and the
sex chromosomes.  Increases in sperm aneuploidies in
individuals showing oligoasthenoteratozoospermia (OTA)
have been reported by many authors [8,10,78–91].
Furthermore, an increase in aneuploid sperm has been
detected in individuals with alterations of any of the basical
semen parameters: sperm number [89, 92], sperm mo-
tility [10] and sperm morphology [80, 89, 93–97].  Mei-
otic errors, either affecting synapsis during prophase I
or meiotic recombination [98–100], can be the starting
point for the production of these chromosomally unbal-
anced spermatozoa.  These meiotic abnormalities have
been related to mutations of meiosis-specific-genes in-
volved in synaptic events, DNA recombination and DNA
repair [101], as well as environmental factors [5, 38].

It is well known that, in assisted reproduction, when
no sperm cells are present in the ejaculate, those coming
from the epididymis or from the testicle are used.  In the
few cases in which sperm FISH studies have been
undertaken, no significant differences in the frequencies
of aneuploidy and diploidy from those observed in ejacu-
late sperm have been reported for epididymal sperm.
Nevertheless, these results differ in testicular spermato-
zoa where the reported incidence of diploidy and disomies
(especially for the sex chromosomes) is higher [102–
104].

However, compilation of sperm FISH data in this
group of patients (infertile with normal karyotype) re-
veals a great heterogeneity, and important interindividual
variations in the results obtained.  Thus, it is in these
individuals that the application of complementary studies
combining different FISH techniques (Multi-FISH in in-
terphase nuclei and Multiplex-FISH in metaphase I and
metaphase II spermatocytes) can provide more useful
information about the entire spermatogenic process (from
spermatogonia to spermatozoa).  Furthermore, the pos-
sibility of identifying and analyzing all the chromosomes
in metaphases I and metaphase II will provide an accu-
rate evaluation of the chromosomes affected by synap-
tic abnormalities and of their meiotic behavior [14].  From
a clinical point of view, in the group of patients-frequent
candidates in assisted reproduction programs-the appli-
cation of the different techniques available would allow

better reproductive counseling.

5    Conclusion

As shown in this review, spermatozoa of infertile
individuals showed a greater incidence of chromosomal
abnormalities than those of the fertile population.  FISH
studies in decondensed sperm nuclei became a notable
advance in the study and diagnosis of male infertility and
were widely incorporated both in the clinical practice
and in the field of basic research.

The possibility of combining different FISH-based
techniques opens new prospects for a better understand-
ing of the entire spermatogenic process.  Furthermore,
these approaches offer novel possibilities for exhaustive
cytogenetic analyses of the meiotic process, that could
allow a better understanding of the meiotic process and
of the consequences of meiotic abnormalities.

From a clinical point of view, the result of pooling all
the data obtained from these analyses could help in the
reproductive counseling offered to these patients.  For
instance, many groups of infertile patients are candidates
for preimplantation genetic diagnosis [105,106], reori-
enting the chromosomal screening of the embryos.
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