Effects of Roselle and Ginger on cisplatin-induced reproductive toxicity in rats

Amr Amin, Alaa Eldin A. Hamza

Department of Biology, United Arab Emirates University, Al-Ain 17551, United Arab Emirates

Abstract

Aim: To evaluate the protective effects of *Hibiscus sabdariffa* (Roselle) and *Zingiber officinale* (Ginger) against cisplatin-induced reproductive toxicity in rats and to study the mechanisms underlying these effects. Methods: Ethanol extracts of *H. sabdariffa* or *Z. officinale* [1 g/(kg·day)] were given p.o. to male albino rats for 26 days, which began 21 days before a single cisplatin i.p. injection (10 mg/kg body weight). Results: Extracts of *H. sabdariffa* and *Z. officinale* reduced the extent of cisplatin-induced sperm abnormality and enhanced sperm motility. Both extracts restored the control level of malondialdehyde (MDA) (lipid peroxidation marker) in the cisplatin-treated testis. The cisplatin injection induced decline in the levels of superoxide dismutase (SOD), reduced glutathione (GSH) and catalase (CAT) were significantly reversed to control levels in groups where cisplatin was preceded by the administration of either *H. sabdariffa* or *Z. officinale*. Conclusion: Both *H. sabdariffa* and *Z. officinale* treatment increased the activities of testicular antioxidant enzymes and restored sperm motility of cisplatin-treated rats. The protective effects of tested plants are, therefore, suggested to be mediated by their potent antioxidant activities. (Asian J Androl 2006 Sep; 8: 607–612)

Keywords: cisplatin; testicular toxicity; *Hibiscus sabdariffa*; *Zingiber officinale*; herb; sperm motility; reproductive toxicity

1 Introduction

Because of the relative spermiotoxicity of cisplatin (cis-diaminedichloroplatinum [II]), almost all patients under chemotherapy show temporary or permanent azoospermia. The damage to both spermatogenesis and testicular endocrine function can be temporary or permanent based on the applied dose of cisplatin [1]. Within days of cisplatin injection, animals undergo severe testicular damage, which is characterized by spermatogenic damage, germ cell apoptosis, Leydig cell dysfunction and testicular steroidogenic disorder [2, 3].

Oxidative stress mediates cisplatin-induced nephrotoxicity [4]. The administration of antioxidants such as vitamin C reverses different cisplatin-associated side effects [4]. Many natural products of plant origin protect against drug-induced toxicity [4, 5]. However, to date, virtually no medicinal plant has been described to relieve the cisplatin-induced reproductive side effects accompanied by chemotherapy applied to cancer patients.

Roselle (*Hibiscus sabdariffa* L., family: Malvaceae), an annual shrub, is commonly used to make jellies, jams and beverages. In folk medicine, *H. sabdariffa* has been commonly used for its anti-hypertension properties [6].
The anthocyanin pigments that confer its color make it a valuable food product. Many biological activities of anthocyanin, such as antioxidative [7], hypocholesterolemic and hepatoprotective activities [8], have been investigated.

Ginger rhizome (Zingiber officinale R., family: Zingiberaceae), is used worldwide as a spice. Both antioxidative [9] and androgenic activity [10] of Z. officinale were reported in animal models. All major active ingredients of Z. officinale, such as Zingerone, Gingerdiol, Zingibrene, gingerols and shogaols, have antioxidant activity [11].

This investigation was set to evaluate the protective effects of H. sabdariffa and Z. officinale against cisplatin-induced testicular toxicity in male rats and to study the mechanisms underlying these effects.

2 Materials and methods

2.1 Chemicals, plants and extraction procedure

Cisplatin was purchased from Bristol-Myers Squibb Company (New Jersey, USA). Thiobarbituric acid, reduced glutathione, 5,5’-dithiobis (2-nitrobenzoic acid), Folin’s reagent, epinephrine, superoxide dismutase, H₂O₂ and bovine albumin were obtained from Sigma Chemical (St. Louis, MO, USA). All other chemicals were obtained from local commercial suppliers. Dried flowers of H. sabdariffa and roots of Z. officinale were purchased from a local herbal store. Plant specimens were authenticated at the herbarium of the United Arab Emirates University. Plant specimens were then grounded into powder, which was subjected to microwave-assisted extraction [12].

2.2 Animals

Adult male Wistar strain albino rats (150–200 g) were obtained from the Animal House, United Arab Emirates University. They were maintained on standard pellet diet and tap water ad libitum and were kept in polycarbonate cages with wood chip bedding under a 12 h light/dark cycle and room temperature of 22–24°C. Rats were acclimatized to the environment for 2 weeks prior to experimental use. This study was approved by the Animal Ethics Committee, United Arab Emirates University.

2.3 Treatment

Animals were divided into four groups of five rats each. Extracts of H. sabdariffa or Z. officinale was given p.o. (1 g/kg body weight) each day for 26 consecutive days using an oral tube. Control and cisplatin groups were gavaged distilled water instead. After 21 days of extracts or distilled water administration, cisplatin (dissolved in a vehicle of normal saline) was injected i.p. to Hibiscus, Zingiber or cisplatin group at a single dose of 10 mg/kg body weight. Animals in the corresponding control group were administered with vehicle alone. Five days after cisplatin injection, rats were killed using an anesthetic diethyl ether. Blood, testes and epididymid of each animal were collected. Testes and epididymid were weighed and the relative organ weight was calculated (relative organ weight = organ weight/body weight × 100). Epididymal sperm count, motility and abnormality were assessed immediately thereafter. The animals were weighed daily throughout the study.

2.4 Epididymal sperm motility, count and abnormality

Epididymal sperm were collected by cutting the one epididymis into small pieces in 5 mL of physiological saline at 32°C. A sperm viability test was done using the method described by World Health Organization (WHO) [13]. Epididymal sperm count and motility were evaluated and the methods used have been detailed elsewhere [14]. Epididymal weights also vary because of individual variation of weights and ages among tested rats. Therefore, sperm numbers were calculated relative to epididymal weights (sperm per gram) [15].

2.5 Biochemistry and histology

Testes were separated and homogenized separately in ice-cold KCl (150 mmol/L). Supernatants were collected and assays of lipid peroxidation, superoxide dismutase (SOD), catalase (CAT) and reduced glutathione (GSH) were done. Protein was estimated by the Lowry’s method as modified by Peterson [16]. The methods have been standardized in our laboratory and have been detailed elsewhere [4].

For the histological examinations, pieces of testis were fixed in 10% neutral phosphate-buffered formalin and hydrated tissue sections, 5 µm in thickness, were stained with Hematoxylin and Eosin. The sections were examined under a Leica DMRB/E light microscope.

2.6 Statistical analysis

Data were expressed as mean ± SE. Statistical significance between the various groups was determined using unpaired t-test and analysis of variance [17].

3 Results
3.1 Effect on organ weight of male rats

The weights of testes and epididymid, expressed as relative to body weight, in rats after cisplatin administration were found to be significantly decreased, compared with the control group (Table 1). No significant changes in the weights of testes and epididymid were found in rats treated with *H. sabdariffa* or *Z. officinale* before and after cisplatin treatment. The administration of cisplatin alone or along with tested herbs did not alter the body weight of the animals (data not shown).

3.2 Effect on epididymal sperm indices

After cisplatin was administered, the epididymal sperm count and motility decreased significantly (*P* < 0.01), whereas sperm abnormality was increased (*P* < 0.01). Administration of either *H. sabdariffa* or *Z. officinale* attenuated the cisplatin-induced decrease of sperm count and motility and protected against sperm abnormality changes (Table 1).

3.3 Biochemical parameters

Significant decline (*P* < 0.01) in testicular content of reduced GSH (Figure 1A) and of the activity of CAT and SOD (Figure 2A, B) was shown in the cisplatin-treated group 5 days post-treatment. A significant increase (*P* < 0.01) of MDA was recorded after cisplatin treatment (Figure 1B). These markers of oxidative stress did not differ significantly from control levels when *H.*

Table 1. Effects of *Hibiscus sabdariffa* and *Zingiber officinale* extracts on testicular and epididymal relative weights and on epididymal sperm count, motility and abnormality in cisplatin-treated rats. Data were expressed as mean ± SE, *n* = 5; *b* *P* < 0.05, *c* *P* < 0.01, compared with the control group.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Control</th>
<th>Cisplatin</th>
<th>Hibiscus sabdariffa</th>
<th>Zingiber officinale</th>
</tr>
</thead>
<tbody>
<tr>
<td>Relative weights of testes (g/100 g)</td>
<td>1.17 ± 0.03</td>
<td>1.00 ± 0.05b</td>
<td>1.08 ± 0.05</td>
<td>1.10 ± 0.08</td>
</tr>
<tr>
<td>Relative weights of epididymid (g/100 g)</td>
<td>0.45 ± 0.02</td>
<td>0.33 ± 0.04b</td>
<td>0.46 ± 0.03</td>
<td>0.40 ± 0.03</td>
</tr>
<tr>
<td>Epididymal sperm count (million/g of epididymis)</td>
<td>295.36 ± 22.92</td>
<td>78.72 ± 18.06c</td>
<td>301.70 ± 33.46</td>
<td>205.70 ± 17.17b</td>
</tr>
<tr>
<td>Sperm motility (%)</td>
<td>79.00 ± 3.32</td>
<td>22.00 ± 4.46c</td>
<td>71.00 ± 2.63</td>
<td>79.00 ± 3.32</td>
</tr>
<tr>
<td>Sperm abnormality (%)</td>
<td>2.20 ± 0.37</td>
<td>29.00 ± 5.68c</td>
<td>2.00 ± 0.45</td>
<td>2.20 ± 0.37</td>
</tr>
</tbody>
</table>

Figure 1. Effects of *Hibiscus sabdariffa* and *Zingiber officinale* on testicular (A) reduced glutathione (GSH) contents and (B) malondialdehyde (MDA) levels in cisplatin-treated rats. Data were expressed as mean ± SE, *n* = 5; *c* *P* < 0.01, compared with the control group.
Herbs and Cisplatin-induced reproductive toxicity

sabdariffa or Z. officinale was administered before cisplatin treatment.

3.4 Histologic evaluation

Cisplatin treatment caused severe degeneration in some seminiferous tubules (Figures 3 and 4). The tubules were also shrunken and greatly depleted of germ cells. The number of Leydig cells was clearly reduced in the cisplatin-treated rats. Debris from the degeneration of cellular components was seen in the lumen. Congestion of blood vessels was also observed between tubules. Animals pretreated with H. sabdariffa or Z. officinale showed normal testicular morphology and spermatogenesis with slight degeneration of spermatids and spermatozoa in some tubules (Figure 4C, D).

4 Discussion

The cisplatin-induced testicular damage in animals is commonly associated with spermatogenic damage, germ cell apoptosis, Leydig cell dysfunction and testicular steroidogenic disorder [2, 3]. Administration of testosterone has protective effects on Leydig cells [18] and spermatogenesis [19] in rats.

The present investigation shows a significant weight reduction of testes and epididymid as well as a decrease in the quality of epididymal sperm (sperm count, motility and morphology) after treatment with cisplatin. Cisplatin-induced testicular damage was also confirmed by histopathological lesions. In the present study, cisplatin-treated animals showed an elevation in testicular MDA level vs. the control animals. Testicular activities of reduced GSH, CAT and SOD were lower in the cisplatin-treated animals relative to those in the control animals. The concurrent decrease of antioxidants in cisplatin-induced tissues might potentially explain the upregulation of MDA production [20]. A correlation between MDA and cisplatin-induced complications has also been reported [4]. It has been demonstrated that cisplatin toxicity in the kidney is mediated by the depletion of antioxidants and the elevation of lipid peroxidation [21]. It has been suggested that cisplatin generates free radicals by interacting with DNA [22]. Cisplatin has enhances the production of reactive oxygen species in kidneys [23], which interferes with antioxidant defense system and results in tissue injury. Therefore, overproduction of free radicals and, hence, oxidative stress might account, at least in part, for testicular injury associated with cisplatin treatment [24].

Recently, much attention has been focused on the protective effects of antioxidants and naturally-occurring substances against cisplatin-induced nephrotoxicity [5, 10]. However, little is known about herbal plants as...
protective agents against cisplatin-induced testicular toxicity. Administration of *H. sabdariffa* extract before cisplatin treatment clearly restored the testicular damage and quality of sperm caused by cisplatin, in addition to retaining the control values of oxidative stress markers. Accumulating evidence suggests that the protective effects of *H. sabdariffa* against oxidative damage could be attributed to its antioxidative properties [8, 24]. The antioxidant activity of *H. sabdariffa* could be attributed to its phenolic contents; namely, anthocyanins [7, 8]. The prevention of cisplatin-induced oxidative stress damage in rats with *H. sabdariffa* supports the hypothesis that the mechanism of testicular damage could be attributed, at least in part, to the overproduction of free radicals.

Administration of *Z. officinale* before cisplatin treatment also attenuates testicular damage induced by cisplatin treatment, as shown by the normal sperm count and morphology and by the histopathological recovery compared to the cisplatin-treated group. The protective effect of *Z. officinale* is reflected by the normalization of antioxidant activities and the concurrent decrease of malondialdehyde in testes. The major active phenolic ingredients isolated from *Z. officinale* (Zingerone, Gingerdrol, Zingibrene, gingerols and shogaols) have antioxidant activity [9, 11]. The protective effect of *Z. officinale* against cisplatin toxicity could also be mediated by its androgenic activities. Kamtchouing et al. [10] reported that *Z. officinale* extracts have a potent androgenic activity in male rats. This activity is reflected by the increase of both testis weight and serum testosterone levels.

In conclusion, the present study shows that *H. sabdariffa* and *Z. officinale* have significant protective effects against cisplatin-induced testicular damage and oxidative stress in rats. Further investigations are underway to elucidate the molecular mechanism of protection mediated by Roselle and ginger.

Acknowledgment

We are grateful to Mr Sayel Daud (Twam Hospital) and to Ms Enas Idris for their valuable assistance. We also thank Professor Michael Buratovich (Spring Arbor University, Michigan, USA) for proofreading the manuscript. Authors are also indebted to Mr Hamdi Kandil for his professional help revising all the graphs.
Herbs and Cisplatin-induced reproductive toxicity

References

3 Cherry SM, Hunt PA, Hassoldt TJ. Cisplatin disrupts mammalian spermatogenesis, but does not affect recombination or chromosome segregation. Mutat Res 2004; 564: 115–28.

12 Alfaro MJ, Belanger JM, Padilla FC, Jocelyn Pare JR. Influence of solvent, matrix dielectric properties, and applied power on the liquid-phase microwave-assisted processes (MAP) extraction of gingers (Zingiber officinale). Food Reser Inter 2003; 36: 499–504.

Edited by Prof. J. Anton Grootegoed