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Abstract

Pregnancies achieved by assisted reproduction technologies, particularly by intracytoplasmic sperm injection
(ICSI) procedures, are susceptible to genetic risks inherent to the male population treated with ICSI and additional
risks inherent to this innovative procedure. The documented, as well as the theoretical, risks are discussed in the
present review study. These risks mainly represent thatconsequences of the genetic abnormalities underlying male
subfertility (or infertility) and might become stimulators for the development of novel approaches and applications in
the treatment of infertility. In addition, risks with a polygenic background appearing at birth as congenital anomalies
and other theoretical or stochastic risks are discussed. Recent data suggest that assisted reproductive technology
might also affect epigenetic characteristics of the male gamete, the female gamete, or might have an impact on early
embryogenesis. It might be also associated with an increased risk for genomic imprinting abnormalities.  (Asian J
Androl 2006 Nov; 8: 643–673)
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1    The importance of evaluation of microscopic and
macroscopic consequences of intracytoplasmic sperm
injection (ICSI) techniques

ICSI represents a revolutionary technique of in vitro
fertilization (IVF) developed during the past decade.  It
might represent the laboratory method of choice for the
treatment of severe cases of male infertility.  This method
has become popular through the years and has been an
invaluable stimulator for the development of novel ap-
proaches and applications along with the standard IVF.
The use of ICSI resulted in the application of sympromatic
(i.e. non-etiological) modes of treatment of severe cases
of male infertility.  In addition, ICSI has been a success-
ful procedure for the fertilization of in vitro matured hu-
man oocytes [1].  Nevertheless, reservations for the ef-
fect of ICSI on the genetic constitution of the offspring
derived from this technology have been raised [2].

Until the introduction of ICSI procedures in human
assisted reproduction, the lack of an adequate number of
competent spermatozoa for the performance of assisted
reproduction methods (i.e. IVF) was a barrier for the
achievement of pregnancies in cases where genetic defi-
ciencies affected the male reproductive potential.  However,
nowadays, because ICSI techniques bypass several barri-
ers in the natural fertilization process, there is much con-
cern on the safety of ICSI and the probable transmission
of reproductive deficiencies (of genetic etiology) or other
genetic abnormalities to the offspring.  Furthermore, the

3.2   Chromosomal abnormalities
3.2.1   Autosomal translocations
3.2.2   Robertsonian translocations
3.2.3   Klinefelter syndrome
3.2.4   47,XYY syndrome
3.2.5  Structural abnormalities of the X-chromosome
3.2.6   Chromosomal inversions
3.3   Deletions of the Y chromosome
3.4   Evaluating chromosomal abnormalities in the ga-
metes of males participating in ICSI programs
3.5   Mitochondrial aberrations of spermatozoa and ICSI
3.6  Reported congenital abnormalities and neuro-
phychiatric development in children born after ICSI
3.7   Risks for chromosomal abnormalities in ICSI chil-
dren

rapid employment of these methods in humans and the
lack of organized experimental and clinical trials prior to
the wide application of ICSI procedures have raised some
additional concerns.  One negative consequence of the
use of ICSI techniques is the shift away from research
on micro-insemination systems.  Thus, there might be a
need to develop new research directions.  One new tar-
get might be the development of more stringent sperma-
tozoal selection/preparation methods to reduce the risk
of transmission of male genetic factors that have been
associated with genetic risks for the ICSI offspring to
the female gamete.

In order to appreciate the potential genetic risks of
ICSI techniques, it is necessary to analyze the causes of
male infertility, particularly those that have a genetic basis.
The use of ICSI procedures for the therapeutic manage-
ment of infertile males with a genetic defect might over-
run the limitations for transfer of this particular defect to
the next generation.  Thus, ICSI techniques might be
responsible for the transmission of a genetic defect to
the next generation.  Therefore, ICSI procedures might
propagate (i.e. maintain and increase) the incidence of a
genetic defect related to the development of impaired
spermatogenesis within a male population.

Furthermore, because gametes and early embryonic
genomes undergo an epigenetic reprogramming, ICSI
techniques might interfere with the establishment of nor-
mal parental imprinting, resulting in embryonic or fetal
abnormalities [3, 4].

3.8   Exogenous DNA and HIV transmission risks from
employment of ICSI procedures
3.9   Genetic and epigenetic risks from intraooplasmic
injections of in vivo produced spermatids
3.10   Genetic risks after assisted reproduction tech-
niques using in vitro generated male haploid germ cells
3.11   Epigenetic risks related to assisted reproduction
techniques
3.12   Risks concerning transgenerational transmission of
an acquired genetic or epigenetic defect
3.13   Risks related to mutations of genes regulating the
spermiogenesis process
3.14   Preimplantation Genetic Diagnosis (PGD)-Biopsy
techniques and Risks
4   Guidelines and Conclusions



Asian J Androl 2006; 8 (6): 643–673

.645.Tel: +86-21-5492-2824; Fax: +86-21-5492-2825; Shanghai, China

disorders.  Mouse models for the study of reproductive
defects have been produced by spontaneous mutations,
transgene integrations, retroviral infection of embryonic
stem cells, ethylnitrosurea mutagenesis and gene target-
ing technology.  Several genes required for vertebrate
fertility are highly conserved in evolution with orthologues
in Drosophila melanogaster (i.e. DDX4), fat facets
(DFFRY), and boule (DAZ) [10–12].  Defects in sexual
differentiation pathways can cause infertility in mice and
humans of both sexes.  It has been pointed out by Matzuk
and Lamb [9] that several gene defects or gene-related
pathophysiologies leading to defects in sex determina-
tion or development (i.e. pseudohermatidism, sex reversal,
Denys-Drash syndrome, pseudovaginal perineoscrotal
hypospadias, cryptorchidism or congenital bilateral ab-
sence of vas deferens), defects in sperm production and
function (i.e. myotonic dystrophy, Nooman syndrome,
sickle cell anemia, β-thalassemia, Kartagener syndrome,
primary ciliary dyskinesia, Fanconi anemia or ataxia
telangiectasia) and endocrinopathies lead to human male
infertility.  In addition, numerical/structural chromosomal
abnormalities result in human male infertility as well.
Knockout animal models have provided strong evidence
supporting the genetic basis of human male infertility in
subpopulations of infertile men.

Of major importance are research efforts focused
on the genes of sex chromosome Y and also on genes
associated with certain genetic syndromes having the
development of male infertility as an inherent component
of their phenotype.  Consequently, these studies provide
evidence for the molecular basis of the genetic risks of
ICSI procedures.

Today, a significant percentage of spermatogenic
abnormalities can be studied and classified according to
genetic criteria.  In fact, 30% of spermatogenic abnor-
malities are considered to have a genetic basis-related
etiology [13–15].  A clinical classification of spermato-
genic disorders alone cannot directly associate a pheno-
type with a particular genetic abnormality.  Excluding
the genetic syndromes/pathophysiologies showing in-
fertility as one of the characteristics of their clinical
phenotype, in the vast majority of infertile males the clinical
diagnosis of infertility is not associated with any other clini-
cally important phenotypic manifestations/characteristics.

In most infertile males, the aetiology of infertility is
unknown (i.e. idiopathic).  This is the reason the majori-
ty of fertility specialists recommend the clinical and labo-
ratory evaluation of infertile males before the application

2    Strong evidence proves a genetic basis of several
spermatogenic defects

During the past decade, there has been a dramatic expan-
sion in the number of genes involved in spermatogenesis,
sexual differentiation and reproductive deficiencies.  The
development of differential display reverse transcriptase-
polymerase chain reaction (RT-PCR) procedures has led
to the identification of many genes that are differentially
regulated in various cell and tissue types [5].  Anway et al.
[5] used the above technique to identify genes that are
expressed in isolated mouse testicular type A spermatogo-
nia and in more advanced germ cells.  The authors iden-
tified cDNA fragments for mDEAH9, RanBP5, GC3,
GC12, and GC14 genes in the testis and type A sper-
matogonia from wild type mice but not in samples from
mutant sterile W/Wv mouse testis.  RT-PCR analyses of
isolated spermatogonia, pachytene spermatocytes and
round spermatids found that mDEAH9, RanBP5, GC3,
GC12 and GC14 genes were expressed in all three cellu-
lar populations.  RanBP5 expression appeared to be regu-
lated during the cycle of the seminiferous epithelium with
the highest expression in stages III through VII.  Ex-
pression of GC14 was greatest in the meiotic germ cel-
lular subpopulations.  In addition, Anway et al. [6] iden-
tified a murine testis complementary DNA encoding a
homolog to human A kinase anchoring protein-associ-
ated sperm protein (ASP).  Northern blot and RT-PCR
analyses did not detect ASP mRNA in mouse spleen,
brain, liver, lung, heart, kidney, skeletal muscle, ovary
or Sertoli cells.  In contrast, the above techniques lo-
calized ASP mRNA to the germ cell compartment of the
seminiferous tubules in the testis.  In addition, Anway
et al. [7] provided strong evidence that the effects of
endocrine disruptors on spermatogenetic capacity in
subsequent (F1 and F2) generations might be the result
of altered DNA methylation patterns in the male germ
line.  The latter study showed the ability of environ-
mental factors to reprogram the genes in the male germ
line and to promote a transgenerational disease state [7].
Other studies by Anway and Skinner [8] confirmed the
transfer of abnormal phenotypes (through epigenetic
actions on the male germ line) to subsequent genera-
tions analyzed.

Mouse models with reproductive defects as a major
phenotype have been created and now hold over 200
[9].  These models are helping to define mechanisms of
reproductive function, as well as identify potential new
genes involved in the pathophysiology of reproductive
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of ICSI techniques.  A major objective of the current
communication was to associate the genetic defects of
infertile males with their semen quality and reproductive
potential.  Another objective was to emphasize the prob-
ability of the transmission of major or minor paternal
genetic defects to the embryo/offspring when ICSI pro-
cedures are applied.  Major genetic or epigenetic defects
in the male XY-embryo might be manifested at the fetal
or neonatal stage as profound and severe manifestations
[9, 16].  In contrast, minor genetic defects in the male XY-
embryo might not affect the early embryonic development
directly but might play a significant detrimental role in the
reproductive potential of the affected newborns.

3    Genetics of male infertility

3.1  Single gene disorders
A subpopulation of patients that present to IVF cli-

nics for treatment of male factor infertility might have
incomplete penetrance of a single gene genetic disorder.
Another population might show some clinical manifesta-
tions characterizing the disorder that is the cause for the
development of infertility.

3.1.1  Congenital bilateral absence of vas deferens due
to cystic fibrosis transmembrane conductance regulator
gene mutations

Most of the congenital bilateral absence of vas defe-
rens (CBAVD) cases (60–90%) and some cases of uni-
lateral absence of the vas deferens are to the result of
mutations of the cystic fibrosis transmembrane conduc-
tance regulator (CFTR) gene.  This gene is responsible
for the underlying genetic defect in cystic fibrosis (CF),
a genetic recessive disorder with an incidence of carri-
ers between 5–6% in the Caucasian population.  Among
infertile patients with CBAVD, the incidence of CFTR
mutation-carriers is estimated to be 20-fold greater than
that in the general population [17].  Mutations in CFTR
are classified as severe or mild.  The association between
the genotype and the phenotype is complex.  In general,
the mild mutations result in mild alterations in pheno-
types restricted in the male reproductive tract and are
characterized by obstructive azoospermia.

More than 700 mutations in CFTR gene spanning
(approximately 230 kb) have been described [18].
CBAVD patients have either two mild CFTR mutations
or a mild mutation in combination with a severe one.
The most frequent severe mutation is the ΔF508 repre-

senting the majority (60–70%) of the CF mutations in
carriers and patients.  In addition, polymorphisms re-
ducing the production of the CFTR protein (5T, 7T) have
been shown.  In particular, the homozygous or heterozy-
gous presence of the 5T allele is a frequent finding in
CBAVD patients with incomplete penetrance.  The iden-
tification of this allele, corresponding to an inefficient
acceptor splice site with a 90% reduction of the CFTR
protein synthesized, is associated with a spectrum of
presentations of phenotype from healthy fertile males to
CBAVD patients [19].  Compound heterozygotes carry-
ing the 5T allele but showing a CFTR mutation might
present with atypical or typical clinical phenotypes of
CF.  At least seven other mutations commonly related to
CBAVD have been described and they are almost all re-
lated to defective CFTR protein processing [17].  In
addition, the missence R117H mutation in exon 4 is also
related to CBAVD in association with the 5T variant [20]).
Thus, testing for R117H and 5T/7T/9T polymorphism is
important in the infertility setting.

Recovery of epididymal or testicular spermatozoa and
subsequent employment of ICSI techniques are essential
to assist reproduction in the group of CBAVD male
patients.  This approach has the risk of producing af-
fected offspring when the female partner is a carrier.
Consequently, at least the most common CFTR muta-
tions (up to 90%) should be screened (see above
paragraph).  Genetic counselling is strongly recom-
mended for these patients (Table 1).  Testing the ob-
structed azoospermic men for the most common muta-
tions and associated polymorphisms (28 in total) is the
appropriate first step.  Preimplantation genetic diagnosis
(PGD) is recommended for couples who are both posi-
tive for CF mutations and wish to integrate ICSI and
genetic diagnosis at early stages of the embryonic de-
velopment [21, 22].

Josserand et al. [23] detected CFTR mutations on
56 alleles of 50 males with congenital bilateral absence
of vas deferens.  A total of 15 (30%) were compound
heterozygote and 26 (52%) heterozygote.  In all, 38%
of the patients had a positive sweat test.  It appears
that congenital absence of vas deferens can be seen in
male heterozygote carriers of one CFTR mutation or
compound heterozygotes with two mutations, one of
which might not be detected by the mutation analysis.
This is important, as it will affect counselling of
couples especially if the female partner carries a CFTR
mutation.
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3.1.2  Kartagener syndrome and other monomorphic
anomalies of spermatozoa

Primary akinesia or dyskinesia of the cilia is a gene-ral
term used to describe disorders of the structure of the cilia
mainly in the airways and the sperm tail resulting in im-
paired sperm motility [24].  Affected individuals have
chronic manifestations (as a result of the above disorder) in
their airways.  Males are usually infertile as a result of the
sperm tail defects.  There are structural anomalies in the pro-
teins forming the bridging links of the dynein in the axoneme
[25].  The co-existence of sinusitis, bronchiectasia, immotile
spermatozoa and situs inversus characterizes Kartagener
syndrome.  The prevalence of situs inversus of any etiol-
ogy appears to be in a range between 1 in 25 000 and 1 in
8 000.  Twenty to 25% of these individuals with complete
mirror-image situs inversus have ciliary dyskinesia and res-
piratory symptoms (Kartagener syndrome) as associated
findings [26].  The prevalence of Kartagener syndrome in
the general population is approximately 1: 40 000.

Earlier linkage analyses in a large number of primary
ciliary dyskinesia families showed extensive heteroge-
neity [26].  No single genomic region harbouring a com-
mon primary ciliary dyskinesia locus was identified.
However, several potential chromosomal regions that
could harbour genes for primary ciliary dyskinesia were
localized [26].  To date, mutations in two genes have
been associated with a minority of primary ciliary dyski-
nesia/Kartagener syndrome cases.  These are genes cod-
ing for the dynein axonemal heavy chain 5 and the dynein
axonemal intermediate chain 1.

A considerable number of additional monomorphic
human sperm defects have been described.  Most ap-
pear to be exceedingly rare and they might only be de-
tectable through electron microscopy [27].  For the ‘9 +
0’ axoneme defect [28] and globozoospermia (round
head defect), evidence from family studies suggests that
these are genetically determined disorders [29].  The mode
of inheritance of monomorphic human sperm defects is
most likely to be autosomal recessive or X-linked [13].
No mapping data for the responsible genes are available
yet [13].  Thus, monomorphic anomalies of spermato-
zoa represent a defined entity with distinct genetic back-
ground and variable characteristics as, for example,
globozoospermia [13, 24] (see the section 3.13).
Globozoospermia is found in less than 0.1% of infertile
male partners [30].  Although these pathophysiologies of
sperm motility and morphology are heterogenous, the
genetic diagnosis is based on the clinical and laboratory

examination, and the appropriate genetic tests (see the
section 3.13).  In a recent study, no mutation was found
among six patients with globozoospermia [30].  Coun-
seling is of paramount importance to inform the couples
about the risk of transmitting these disorders to their
offspring.

3.1.3  Genetic disorders with endocrine or neurologic
implications

Kallman syndrome is implicated in approximately 5%
of the infertile males with hypogonadotrophic hypogo-
nadism.  Anosmia is a result of deletions in the Xp22
region or mutations of the KAL-1 gene.  The syndrome
phenotype varies from normogonadotrophic fertile pa-
tients to the total absence of the gonadotrophins (FSH
and LH) as a result of insufficiency of GnRH.  The full
abnormal phenotype is due to the inefficient migration of
the hypothalamic olfactory neurons and those producing
GnRH.  When the serum testosterone profiles are suffi-
cient to support sexual differentiaton, the male pheno-
type is normal and spermatogenesis can be stimulated by
gonadotrophins to permit subsequent use of ICSI proce-
dures [31].

GnRH receptor gene mutations (autosomal recessive
inheritance) result in hypogonadotropic hypogonadism
with oligospermia.  In addition, FSH receptor gene mu-
tations are associated with variable degrees of spermato-
genic defects.  Activating mutations of the same gene
have been described.  Furthermore, mutations in genes
encoding the LH receptor, 5α-reductase 2, or CYP 21
might cause defects in spermatogenesis [32].  Affected
males might be treated with ICSI and, therefore, are at
risk to transmit the underlying defect to the offspring.

A form of Kennedy disease characterized by andro-
gen resistance and a molecular defect in the androgen
receptor gene is associated with male infertility and de-
fects in spermatogenesis [33–35].  The main feature of
this condition is spinobulbar muscular atrophy (SBMA)
with neurodegenerative phenotype.  The gene respon-
sible for the expression of androgen receptor is located
on the X chromosome (Xq11-q12, OMIM #313700).  The
latter men might be candidates for ICSI techniques be-
fore the full onset of their disease, and they should also
be informed that the consequences of their disease might
be considered much more devastating than the infertile
phenotype and that their disease might result in severe
clinical manifestations.  Nevertheless, as we have previ-
ously reported, couples with female SBMA carriers might
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request PGD in order to assure the birth of an unaf-
fected offspring [36].  Myotonic dystrophy and fragile
X syndrome, similarly as the Kennedy disease, represent
disorders characterized by dynamic trinucleotide repeat
expansions.  Decreased sperm function or azoospermia
are common in patients with myotonic dystrophy [37–
39].  In cases of myotonic dystrophy of intermediate
clinical severity, the use of combined ICSI and PGD pro-
cedures might assist to prevent the transmission of the
defect to the offspring [40].  The X chromosome is not
transmitted directly through a male carrier of an X-linked
disorder to his male offspring, nevertheless it can be trans-
mitted via a daughter to a male grandchild.  Sermon et al.
[40] have described their experience with fluorescent PCR
and automatic fragment analysis for the clinical applica-
tion of pre-implantation genetic diagnosis of myotonic
dystrophy.

The prevalence of the fragile X syndrome (FRAXA)
premutation carriers is 1/1 000 in males and 1/350 in
females, whereas the prevalence of full mutation is 1/4 000
males or females [41].  Carriers of premutations have
mild or no symptoms, whereas male patients with full
mutation of the FRAXA syndrome have moderate to se-
vere mental retardation, behavioural problems and sper-
matogenic impairment including abnormal tubular mor-
phology and excessive number of malformed spermatids.
The overall result is decreased fertility probably as a re-
sult of the fact that the gene that is responsible for the
phenotype is expressed in the male gonads [42, 43].  The
use of ICSI procedures as a treatment for males with
FRAXA syndrome mutations, or even permutations, is
definitely susceptible to serious ethical considerations.
Couple counseling, written consent forms and, probably,
National Authority Permission is necessary.  Platteau et al.
[44] claimed that PGD work-up for FRAXA syndrome
couples should include a determination of the premutation
or mutation carrier status and the paternal or maternal
origin of the premutation/mutation.  Fragile X-premutation
carriers should be advised not to postpone reproduction.

Female premutation carriers have up to 50% (depen-
ding on CGG repeat size) risk of fragile X syndrome in
their offspring and a risk (15–20%) of premature ova-
rian failure [41, 45].  Up to 30% of females with a full
mutation can be symptomatic depending on the X-inac-
tivation status.  Female premutation carriers belonging
to families with fragile X syndrome should ask for PGD
or prenatal diagnosis (PND) in order to prevent trans-
mission of the disease [46].  Sermon et al. [46] reported

for the first time in the literature a method for PGD for
FRAXA syndrome based on the amplification of the CGG
triplet in the normal allele.

The above-mentioned single gene genetic disorders
indicate the risks of transmitting genetic abnormalities
via ICSI procedures and stress the need for systematic
genetic testing in familial or sporadic infertility cases
(Table 1).

3.2  Chromosomal abnormalities
Chromosomal abnormalities have been associated

with infertility or subfertility in males.  The incidence of
chromosomal abnormalities in the karyotypes of infertile
males is 5.8%, with a predominance of sex chromosomal
abnormalities according to a review of pooled data from
11 surveys (9 766 men with azoospermia or oligosper-
mia were evaluated) [2, 47].  The phenotypic conse-
quences of the sex chromosomal abnormalities are usu-
ally mild compared with the consequences of autosomal
chromosomal abnormalities in males [14].  In addition,
the incidence of chromosomal aneuploidies, especially
those shown in the sex chromosomes, is higher in sper-
matozoa from men with non-obstructive azoospermia
[48].  Mateizel et al. [49] have shown that aneuploidy
for chromosome 18 is more frequent in men with sper-
matogenic failure.  Furthermore, sperm concentrations
smaller than 20 × 106 spermatozoa/mL are associated
with significantly higher percentage of de novo chromo-
somal anomalies in prenatal samples in successful preg-
nancies [50, 51].  Numerical abnormalities of the sex
chromosomes might be found either in immature tes-
ticular germ cells (germline defects) or in spermatozoa
of men whose peripheral blood cytogenetics indicate non-
mosaic Klinefelter syndrome (gonadal mosaicism) [52].

If ICSI procedures are scheduled for the therapeutic
management of male infertility associated with chromo-
somal abnormalities of the male partner, it is important
to discuss with the couple the option of PGD or PND
(Tables 1, 2).

3.2.1  Autosomal translocations
Autosomal translocations are 4–10 times more fre-

quent in infertile (subfertile) males compared with fertile
individuals [53, 54].  Mendelian Cytogenetic Network
has approximately 265 entries of balanced reciprocal
tranlocations from infertile males [55].  Among balanced
chromosomal rearrangements in male infertility, half of
the identified autosomal breakpoints (5/10) were found
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to be located on chromosome 1, suggesting a clustering
of male specific loci on this chromosome.  The above
breakpoints along chromosome 1 have been found to be
in excess in infertile males (from the Mendelian Cytoge-
netics Network) compared with the karyotypes of a co-
hort [56].

In general, reciprocal or non-reciprocal autosomal
chromosomal translocations and complex chromosomal
rearrangements (involving three or more chromosomes)
are associated with subfertility.  This is the result of in-
appropriate pairing of the homologous chromosomes dur-
ing meiosis, leading to meiotic disturbance or chromo-
somal imbalance in the male gametes [2, 57, 58].

3.2.2  Robertsonian translocations
Translocations between acrocentric chromosomes

(Robertsonian) are frequent in humans, but their impact
on spermatogenesis varies from the absence of sper-
matogonia to the development of normal spermatogenesis.
The therapeutic management of Robertsonian transloca-
tions associated with infertility depends on the presence
of spermatozoa and the success of ICSI procedures.  In
these cases, ICSI procedures raise risks for chromo-
somal abnormalities in the generated embryos [21, 22,
59].

The reproductive risks for the newborn, as a result
of the presence of Robertsonian translocations in the in-
fertile couple, depend on the chromosomes involved and
the sex of the carrier.  The most common risks are re-
lated to newborn translocation trisomies of chromosomes
13, 14, 21 or 22.  An increased proportion of carriers of
robertsonian translocations (usually t[13q;14q]) has been
reported among oligozoospermic (1.6%) and azoospermic
(0.09%) men attending infertility clinics or among the
male partners in couples with recurrent spontaneous abor-
tions [2, 60].  Therefore, there is a strong indication for
the performance of PGD in combination with the ICSI
procedures [61].  For the evaluation of the chromosomal
composition of spermatozoa, fluorescent in situ hybri-
dization (FISH) techniques are recommended with addi-
tional (to the probes for sex chromosomes) specific
probes for chromosomes participating in probable recip-
rocal or Robertsonian translocations [62–64].

Van Assche et al. [63] carried out PGD and sperm
analysis by FISH for the most common reciprocal trans-
location t (11:22).  By choosing probes lying on both
sides of the breakpoints and by using a combination of
subtelomeric or locus-specific probes and centromeric
probes, the use of three-color FISH enabled detection of
all the imbalances in sperm and/or cleavage stage em-

Table 2. Type of Y-chromosome microdeletions and testicular pathology (for additional information see references 95, 97, 98, 105, 107, 109
and 110). SCOS, Sertoli cell-only syndrome; PS, primary spermatocyte; PGD, preimplantation genetic diagnosis.

   Region of  Type of        Testicular Phenotype                     Considerations
microdeletion deletion

AZFa Entire SCOS No reason to perform testicular biopsy
AZFb Entire PS arrest No reason to perform testicular biopsy
AZFc Entire Ranging from  hypospermatogenesis Testicular biopsy may be performed; In case

to SCOS of presence of spermatozoa, sperm
                                                                                                                                            cryoprservation is recommended; if ICSI

procedures result in fertilization and early
embryonic development, PGD is recom
mended to avoid transfer of 45,X embryos

AZFa Partial hypospermatogenesis to SCOS Testicular biopsy may be performed.
AZFb Partial hypospermatogenesis to SCOS Testicular biopsy may be performed.
AZFc Partial hypospermatogenesis to SCOS Testicular biopsy may be performed; In case

of presence of spermatozoa in either
                                                                                                                                            the ejaculate or the testicular tissue

sperm cryoprservation is recommended;
if ICSI procedures result in fertilization and
embryonic development, PGD is recom-
mended to avoid transfer of 45X embryos.
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bryos in the patients.

3.2.3  Klinefelter syndrome
Non-mosaic Klinefelter (47,XXY) and mosaic

Klinefelter syndrome (46,XY/47,XXY) are the most com-
mon chromosomal abnormalities observed in azoospermic
males.  Adult males with non-mosaic Klinefelter syndrome
(47,XXY) have hypogonadism and infertility.  Disrup-
tion (arrest) in spermatogenesis is shown.  Spermatogo-
nia in these patients usually do not further differentiate
beyond the stage of primary spermatocyte, but occa-
sionally testicular focal advanced spermatogenesis up to
the spermatozoon stage is observed.  FISH analysis of
spermatogonia and spermatocytes from men with non-mo-
saic Klinefelter syndrome show a variable frequency of
aneuploidy of the sex chromosomes (either 47,XXY or 46,
XY profiles are shown indicating gonadal mosaicism) [52,
65, 66].  Spermatozoa recovered from testicular biopsies
of men with karyotypes indicating non-mosaic Klinefelter
syndrome have been used to fertilize oocytes by ICSI
techniques.  Preimplantation blastomere-FISH analysis
should be carried out with X and Y probes to confirm
that the sex chromosomal complement of the embryos
that are going to be transferred is normal.  The birth of
normal offspring has been reported after ICSI techniques
using testicular spermatozoa recovered from men with
non-mosaic Klinefelter syndrome [52, 65, 67-69; among
others].  We can speculate that the risk of transmitting
additional X chromosomes to the offspring might be re-
lated to the percentage of the 24,XY testicular spermato-
zoa in the recovered testicular sperm population.  It ap-
pears logical to speculate that a man with a non-mosaic
Klinefelter syndrome and  a large percentage of abnor-
mal 24,XY spermatozoa in his testicular biopsy sample
he may have a large probability to generate a 47,XXY
embryo after ICSI techniques.  A number larger than 20
human offspring have been fathered by men with non-
mosaic Klinefelter syndrome [52, 65].  Although all the
latter offspring are normal (46,XY or 46,XX), PGD or
PND are strongly recommended.  Ron-El et al. [70] have
reduced a 47,XXY embryo implanted after ICSI and
embryo transfer techniques in a couple with Klinefelter
syndrome.  Previous studies in our laboratory have shown
that among men with non-mosaic Klinefelter syndrome,
those with larger secretory function of Sertoli cells have
a higher probability to be positive for testicular foci for
spermatogenesis up to the spermatozoon stage [52, 65].
In addition, we have previously shown that within a

population of men with non-moaic Klinefelter syndrome,
the larger the testicular telomerase profiles are the higher
the probability of finding testicular spermatozoa is [52,
65].  In a recent study, Akashi et al. [71] reported a male
patient with mosaic Klinefelter syndrome whose ejacu-
lated spermatozoa were identified as being haploid by
FISH before ICSI leading to the successful pregnancy
of his wife and the birth of a healthy baby girl.  When
semen samples in men with either mosaic or non-mosaic
Klinefelter syndrome are negative for spermatozoa, tes-
ticular biopsy should be carried out to recover haploid
male gametes [52].  Although testicular fine needle aspi-
ration has been used as a diagnostic tool in a general
group of non-obstructed azoospermic men [72], its role
in men with Klinefelter syndrome has not been evaluated.

A subpopulation of men with non-mosaic Klinefelter
syndrome has both 46,XY spermatogonia/primary sper-
matocytes and 47,XXY spermatogonia/primary sperma-
tocytes in their seminiferous tubuli [52].  A previous study
in our laboratory has not indicated sex chromosomal non-
disjunctions during the meiotic divisions of the 46,XY
spermatogonia/primary spermatocytes in men with non-
mosaic Klinefelter syndrome [52].  Subsequently, simi-
lar numbers of testicular 23,X round spermatids and 23,Y
round spermatids are thought to have been produced from
the meiosis of the normal 46,XY spermatogonia/primary
spermatocytes in the above men.  To explain the larger
proportion of 23,X round spermatids compared with the
23,Y round spermatids within a population of men with
non-mosaic Klinefelter syndrome, an attractive specula-
tion is that an XX pairing and a univalent Y chromosome
type of pairing occurs in the great majority of 47,XXY
primary spermatocytes that undergo regular meiosis [52].
In contrast, an XY pairing and a univalent X chromo-
some type of pairing might occur in a minority of 47,
XXY primary spermatocytes that undergo regular meiosis.
This speculation can explain a) the increased proportion
of the hyperhaploid 24,XY round spermatids compared
with the hyperhaploid 24,XX round spermatids within a
population of men with non-mosaic Klinefelter syndrome
[52], and b) the larger proportion of testicular 23,X round
spermatids compared with testicular 23,Y round sper-
matids within a population of men with Klinefelter syn-
drome [52, 65].  XX pairing and a univalent Y type of
pairing in 47,XXY primary spermatocytes that undergo
meiosis is expected to result in increased proportions of
23,X round spermatids/spermatozoa and 24,XY round
spermatids/spermatozoa (post-meiosis) in the testicles of
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men with Klinefelter syndrome [73].  This is because a
regular meiosis in a 47,XXY spermatogonium with an
XX pairing and a univalent Y should lead to the produc-
tion (from one 47,XXY spermatogonium) of two 23,X
spermatids and two 24,XY spermatids [73].  Increased
proportions of 24,XY round spermatids compared with
24,XX round spermatids within a population of men with
Klinefelter syndrome and larger proportion of 23,X round
spermatids compared with 23,Y round spermatids have
been found, indeed, within a population of men with non-
mosaic Klinefelter syndrome in our laboratory  [52].  In
contrast, if an XY pairing and a univalent X had been
present in the majority of 47,XXY primary spermatocytes,
regular segregation of the sex chromosomes would have
resulted in increased proportions of a) 23,Y round sper-
matids/spermatozoa (compared with 23,X round sper-
matids/spermatozoa) and b) 24,XX round spermatids/
spermatozoa (compared with 24,XY round spermatids/
spermatozoa) in the testicles of men with Klinefelter syn-
drome [73].  In fact, if a XY sex vesicle is formed and
the extra X chromosome is free, regular segregation of
the sex chromosomes would produce (from one 47,XXY
primary seprmatocyte) two 24,XX spermatids/sperma-
tozoa and two 23,Y spermatids/spermatozoa [73].  It ap-
pears that the findings of our previous study demon-
strating an increased proportion of 24,XY round
spematids compared with 24,XX round spermatids and
a larger proportion of 23,X round spermatids compared
with 23,Y round spermatids suggest an XX pairing a Y
univalent in the majority or in all of the 47,XXY primary
spermatocytes that undergo meiosis [52].  Therefore,
we might suggest that an XX pairing and a univalent Y
chromosome type of pairing occurs in the great majority
of 47,XXY primary spermatocytes that undergo meiosis.

3.2.4  47,XYY
Paternal non-disjunction of the sex chromosomes

during meiosis is the underlying cause for the presence
of an extra Y chromosome.  Although some 47,XYY males
are fertile and produce normal gametes, a limited sub-
population of 47,XYY males might have severely impaired
sperm production [74].  Although the additional Y chro-
mosome might be spontaneously corrected during meiosis,
there is a high incidence of disomic spermatozoa with 24,
XY or 24,YY constitution [75].  Post-fertilization, the risk
of aneuploidy of the sex chromosomes in the derived
embryos might be expected to depend on the frequency
of the aneuploid spermatozoa in the testicular tissue of

the ICSI participants.  It appears logical to speculate that
the larger the percentage of sperm aneuploidies is within
a population of testicular spermatozoa recovered from a
testicular biopsy sample of a man with 47,XYY syndrome
syndrome, the larger the probability is that the embry-
ologist will aspirate and process for ICSI an aneuploid
spermatozoon, with an overall result a larger probability
to generate an aneuploid embryo.  ICSI procedures are
applicable with the reservation of a higher genetic risk
for aneuploid embryos.  PGD or PND are strongly
recommended.

3.2.5  Structural abnormalities of the X chromosome
Structural abnormalities of the X chromosome, such

as minor deletions or reciprocal translocations involving
the chromosome X and an autosomal chromosome, are
occasionally the cause of male infertility [76].  Deletions
of a large part of the X chromosome of the female ga-
mete results in the loss of one or more genes and is in-
compatible with the development of a male embryo after
ICSI procedures because males have only one X chro-
mosome and the loss of any genes normally located on
the X chromosome is not compensated [14].

The results of an X-autosome translocation vary
considerably depending on the sex of the carrier of such
an aberration and the position of the translocation break
points.  Female carriers of a balanced X-autosome trans-
location generally are phenotypically normal.  An impor-
tant exception is evident in those women in whom the
break points in the X chromosome involve the critical
region Xq13-q26.  These women are always infertile be-
cause of gonadal dysgenesis [77].  Reciprocal X-auto-
some translocations affect male fertility.  A possible hy-
pothesis is that reciprocal X-autosome translocations
might interfere with X chromosome inactivation [77, 78].
Thus, it has been proposed that X-autosome transloca-
tions interfere with the process of X chromosome inac-
tivation resulting in meiotic arrest at the primary sperma-
tocyte stage.  A probable hypothesis is the reactivation of
the X chromosome, which is supposed to remain tran-
scriptionally silent during spermatogenesis and the over-
all result, might be azoospermia [79, 80].  Information
on the percentage of male germ cells with X-autosomal
translocations in the above men is not available in the
literature today.  ICSI procedures might be applied in
these cases (using testicular spermatozoa from testicu-
lar foci of advanced spermatogenesis) [14], however,
there is a risk of transmission of either balanced or un-
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balanced chromosomal translocations in the resulting
embryos.

Production of secondary spermatocytes and sper-
matids (Figure 1) depends on the X chromosome inacti-
vation driven by an X-linked gene acting at the primary
spermatocyte stage.  The X and Y chromosome form a
single mass in the zygotene stage during pairing of the
chromosomes at meiosis I [78, 81].  The pyruvate dehy-
drogensa 1 gene is silent in spermatocytes and sperma-
tids [80].  The inactivation of the X chromosome is es-
sential to prevent the recombination between X and Y
chromosomes during meiosis [80].  It is not clear why
the X-chromosome should be inactivated during
spermatogenesis.  Because there is no evidence that pro-
ducts of the X-chromosome are not permissive for
spermatogenesis, it might be suggested that inactivation
of the X-chromosome might reflect not the metabolic
needs of the testicular germ cells but specific meiotic
events such as chromosomal pairing and recombination.
X-chromosome inactivation might be directed by an X-
linked gene during the primary spermatocyte stage [14].
Thus, the existence of translocations involving the chro-
mosome X might have a considerable effect in spermato-
genesis, impairing the capacity of primary spermatocytes
to enter meiosis [80].  In some cases, spermatogenesis

progresses to the stage of elongated spermatids but this
process is extremely inefficient and only a small number of
spermatozoa is produced [14].  In patients having sper-
matids or few spermatozoa in testicular biopsies, the prob-
ability of chromosomal abnormalities in the embryos de-
rived by ICSI techniques cannot be excluded.  PGD might
help to avoid transfer of the affected embryos [21, 22].

3.2.6  Chromosomal Inversions
Inversions (peri- and paracentric) of chromosomes

1, 3, 5, 6, 9, 10 and 21 have been described in infertile
men [60, 82–84].  The impact of chromosomal inver-
sions in the development of impairment in spermatogen-
esis in infertile males is variable.  Arrest at the primary
spermatocyte stage has been described for a particular
pericentric inversion on chromosome 1, whereas
pericentric inversions of other chromosomes have been
associated with azoospermia or oligospermia [60, 82].
The couples should be informed about the probability of
spontaneous abortion if pregnancy is achieved via as-
sisted reproduction [85].

3.3  Deletions of the Y chromosome
Abnormalities in the Y chromosome are discussed

separately in the present review study because the struc-
tural abnormalities of this chromosome have a direct ef-
fect on sexual differentiation and fertility.  Various struc-
tural abnormalities of the Y chromosome are distinguish-
able at the molecular or the cytogenetic level.  Translo-
cations and microdeletions are the most frequently ob-
served structural abnormalities.

The Y chromosome is a complex chromosome that
contains heterochromatin located among repeated genes,
gene families and palindromic motifs.  The non-recom-
bining region of the Y chromosome contains three classes
of euchromatic sequences [86], including: i) those that
are transposed from the X chromosome during the pro-
cess of the evolution of the Y chromosome  (X transposed);
ii) those sequences that are somewhat similar to sequence
information from the X (X degenerate); and iii) those
sequences that are repeated across the proximal short
arm of the Yp and across most of the Yq.

Translocations between the Y chromosome and au-
tosomal chromosomes [87–89] appear to be more com-
mon and have a detrimental influence on spermatogenesis.
Ooplasmic injections have been applied in such cases
after testicular biopsy and recovery of spermatozoa.  A
risk of developmental delay as the result of chromosomal

Figure 1. Human male round germ cells in minced testicular tissue
recovered from a non-obstructed azoospermic man. Observation
via a confocal scanning laser microscope. A primary spermatocyte
is indicated by a white arrow. A secondary spermatocyte is indi-
cated by an orange arrow. A round spermatid is indicated by a long
black arrow. The acrosomal cap of the round spermatid is indicated
by a short black arrow. Blue arrows indicate red blood cells. A
white blood cell is indicated by a yellow arrow (For further infor-
mation on morphometric and morphological differences of male
round germ cells under confocal scanning laser microscopy, please
see references 16 and 52).
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imbalance in the offspring has been suggested [90].  It
has also been suggested (by a limited number of studies)
that dicentric Y chromosomes do not allow spermatoge-
nesis to proceed further than primary spermatocyte stage
(early maturation arrest) [91, 92].  Therefore, ICSI pro-
cedures cannot be taken into consideration for the thera-
peutic management of these couples.

In the Yq11.21-23 region, where the azoospermia
factor (AZF) is located, there are three loci related to
spermatogenesis (AZFa, AZFb and AZFc).  These loci
have been clustered in tandem and contain putative or
candidate genes detrimentally affecting spermatogenesis
when they are absent.  In a general population of ICSI
participants, the frequency of deletions is 2–3%, whereas
in infertile males with azoospermia, the frequency of dele-
tions is 6–12% [15, 93].  Deletions are present in 5.8% of
men with severe oligozoospermia.  Katagiri et al. [86] have
shown an incidence of Y chromosome microdeletions
equal to 16% in a population of azoospermic men and
equal to 4% in a population of severe oligospermic men.
In the above study, Y chromosome microdeletions were
absent when sperm concentration was larger than
5 000 000 spermatozoa/mL.  AZFa region harbors the
genes DFFRY, USP9Y and DBY that are important for
spermatogenesis.  However, the most common deletions
occur in AZFc and AZFb regions involving the DAZ and
RBM multiple copy genes and other genes such as CDY1,
PRY, TTY2 and EIF1AY expressed solely in the human
testis [94, 95].  There is no clear association between the
length of the deletion and the semen quality or the testicular
histology.  The phenotype varies from oligospermia to
azoospermia with/or without testicular foci of spermato-
genesis up to the spermatozoon stage.  All patients with
complete deletion of AZFa region or complete deletion of
the AZFb region are azoospermic and negative for foci
of testicular spermatozoa [96].  A strict genotype-phe-
notype correlation is observed only for the deletion of
the entire AZFa and AZFb regions, which are associated
with Sertoli cell-only syndrome and arrest at the primary
spermatocyte stage, respectively [97].  On the contrary,
the deletion of the most distal AZFc is associated with a
heterogenous phenotype in different individuals ranging
from the absence of germ cells in the testis to a severe
reduction of the sperm number/motility/morphology in
the ejaculate [98].  This phenomenon suggests that al-
though spermatogenesis might start without AZFc genes,
their presence is crucial to obtain quantitatively and quali-
tatively normal spermatogenesis.  This region contains a

total of eight gene families: BPY2, CDY1, DAZ, TTY3.1,
TTY4.1, TTY17.1, CSPG4LY and GOLGA2LY.  The clas-
sical AZFc deletion, which removes 3.5 Mb between the
b2/b4 amplicons, is the most frequent type of deletion.
A partial deletion termed gr/gr has been described in in-
fertile men with varying degrees of spermatogenic failure.
This deletion removes half of the AZFc region content.
Another deletion with the name b2/b3 appears to have no
effect on fertility status in association with a certain Y
chromosome background commonly present in north-
ern European populations [99].  The first multicopy gene
identified in this region (i.e. AZFc) was the DAZ, which
belongs to a gene family that consists of the two autoso-
mal single copy genes BOULE and DAZL gene and the Y
specific DAZ.  No mutations for the DAZL and BOULE
genes have been reported so far, except two single nucle-
otide polymorphisms in the DAZL gene [100].  Katagiri
et al. [86] have reported surgical retrieval of epididymal
spermatozoa from a man with partial deletion in AZFb
region.  His son had an identical deletion.  Patients with
AZFc deletions are either azoospermic (with or without
testicular foci of spermatozoa) or have spermatozoa in
the ejaculate.  Additional studies confirmed that
azoospermic men with complete deletions of either the
AZFa or AZFb regions never demonstrated testicular
spermatozoa after testicular biopsy procedures [101].
Testicular spermatozoa of men with (either complete or
partial) AZFc deletions or partial AZFb deletions are an-
ticipated to successfully fertilize oocytes and generate
offspring at the same rate as non-deleted infertile men.
In addition, a subpopulation of men with AZFc deletions
has a certain degree of oligospermia that requires ICSI.
The pathogenetic role of Y-chromosome deletions in male
infertility has been questioned by reports describing
microdeletions in proven fertile men [97].  However, male
fertility is not a synonym for normozoospermia [97].  The
pathogenetic significance of Y chromosome microdele-
tions is spermatogenic failure and not infertility.  In rare
cases, transmission of an AZFc deletion has been re-
ported via natural conception from a subfertile younger
father to an infertile son [102].  Kuhnert et al. [103] re-
ported natural transmission of an AZFc Y chromosome
microdeletion from a father to his sons.  Rolf et al. [104]
have reported natural transmission of partial AZFb dele-
tion over three generations.  Kamische et al. [105] re-
ported transmission of a Y-chromosomal deletion involv-
ing the DAZ and CDY1 genes from father to son through
ICSI.  Men with Y chromosomal microdeletions who are
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positive for spermatozoa will almost certainly pass the
deletion to male offspring generated by ICSI procedures
[106–109].

A progressive decrease in testicular spermatogenetic
activity over time has been reported in some infertile men
with AZFc microdeletions.  Thus, testicular or ejacu-
lated spermatozoa cryopreservation might be recom-
mended for the latter men.

Patsalis et al. [110] have suggested that there might be
a potential risk of chromosomal aneuploidy for male off-
spring born to fathers with Y-chromosome microdeletions.
This risk might include not only 45,X/46,XY offspring
but also 45,X offspring.  In addition, the above investi-
gators recommended that PGD should be offered when
men have ICSI for hypospermatogenesis caused by Y
chromosome microdeletions to avoid transfer of 45X
embryos.

Data by Sofikitis et al. [111] using the testicular an-
drogen-binding protein activity as a marker of Sertoli cell
secretory function, does not show a defect in Sertoli cell
secretory function in men with Y chromosome micro-
deletions.  We have previously hypothesized that in the
future, it might be possible to achieve survival and differ-
entiation of germ cells from non-obstructed azoospermic
men (without genetically based causes of azoospermia)
into the seminiferous tubuli of recipient human individu-
als (with AZFc microdeletions) who are negative for tes-
ticular spermatozoa [111].  The attractive hypothesis is
that the recipient human Sertoli cells and the intratubular
biochemical environment will support the donor human
germ cells to differentiate.  The above hypothesis is sup-
ported by studies in animals showing that the intratubular
environment from infertile recipients can support the dif-
ferentiation of donor germ cells from infertile subjects
[111].  Some azoospermic couples who have considered
using donor spermatozoa might be attracted by the idea
of achieving pregnancy via sexual intercourse, even if
the male partner ejaculates donor rather than his own
spermatozoa into the reproductive tract of the female
partner.

Even in Sertoli cell-only syndrome testicular histo-
logy (in sections stained by hematoxylin–eosin) from sub-
populations of men with Y chromosome deletions, there
is a probability that spermatids or spermatozoa can be
identified in seminiferous tubules.  It has been estimated
that spermatozoa (either in the ejaculate or the testicular
tissue) can be found in approximately 50% of azoospermic
men with microdeletions in the AZFc region of the Y

chromosome.
Because AZF microdeletions are transmitted from the

father to the male offspring, genetic evaluation for Y chro-
mosomal deletions is recommended in non-obstructed
azoospermic men or severely oligoasthenospermic
individuals.  In addition, large microdeletions of the tip of
the Yq chromosome might cause chromosomal instabi-
lity and might be responsible for chromosomal rearrange-
ments or even Y chromosome loss.  Issues, such as tes-
ticular mosaicism of Y chromosomal deletions, expan-
sion of the Y chromosome deletions in the offspring,
lower fertilization rates post-ICSI and familial basis of Y
deletions represent the target of several investigations but
the results are still inconclusive [112].

Because ICSI techniques are commonly used in pa-
tients with Y chromosome microdeletions, thus posing a
considerable risk of passing the deletion on to the off-
spring [113], proper genetic counseling followed by de-
tailed family history and specific molecular or cytoge-
netic assays are recommended.

3.4  Evaluating chromosomal abnormalities in the ga-
metes of males participating in ICSI programs

Males with severe oligospermia, obstructive azoosper-
mia or non-obstructive azoospermia with testicular foci
of spermatogenesis up to the spermatozoon stage repre-
sent the majority of candidates for ICSI.  Several studies
have been focused on the chromosomal constitution of
spermatozoa of fertile and infertile men using FISH pro-
cedures [114, 115].  Although there is a remarkable vari-
ability in the methodology of these studies (i.e. regarding
the number of FISH probes used or the selection of the
patients), the findings of all these investigations indicate
chromosomal abnormalities in the spermatozoa of ICSI
participants (either oligospermic or azoospermic with
testicular foci of spermatozoa).  These abnormalities are
mainly diploidy, autosomal disomy and nullisomy or aneu-
ploidies of the sex chromosomes [114].

Spermatozoa recovered from non-obstructed
azoospermic men (with testicular foci of advanced
spermatogenesis) do have a higher incidence of chromo-
somal aneuploidy patterns among which sex chromo-
somal aneuploidy is the most common [48–50].  Mateizel
et al. [49] have shown that the frequency of aneuploidy
for chromosome 18 was higher in a group of azoospermic
men with spermatogenic failure than in a group of
azoospermic men with normal spermatogenesis.  Huang
et al. [116] reported an increase in the frequency of sex
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chromosomal abnormalities in testicular spermatozoa of
non-obstructed azoospermic men.  In another study,
Viville et al. [117] showed that in obstructed azoospermic
men (with or without CFTR mutation), there have not
been significant differences in the chromosomal consti-
tution of testicular spermatozoa compared with normal
semen samples.

In subpopulations of infertile men with primary tes-
ticular damage as a result of non-mosaic Klinefelter
syndrome, there is a significant increase in the propor-
tion of spermatids/spermatozoa with chromosomal
aneuploidies.  However, the majority of spermatids/sper-
matozoa (if they are present in testicular biopsy material)
in the latter men have the normal haploid constitution of
the chromosomes [52].

In a recent study, there was no significant differ-
ence in the incidence of aneuploid embryos between
couples with obstructive azoospermia and couples with
non-obstructive azoospermia [118].  Nevertheless, in both
groups of the above study, the percentage of aneuploid
embryos was relatively high (53–60%), indicating the
potential risks of the employment of testicular spermato-
zoa for ICSI treatment.  These patients would require a
systematic monitoring of spontaneous abortions or im-
plantation failures.  In addition, the ICSI treatment should
be coupled with PGD or PND for early identification of
chromosomally abnormal embryos.

3.5  Mitochondrial aberrations of spermatozoa and ICSI
The presence of mitochondrial abnormalities in sper-

matozoa has been proposed to be a cause of male infertility;
mitochondrial abnormalities have been associated with
asthenospermia [119].  Low sperm motility might be as-
sociated with deformations of the mitochondrial sheath
containing functional mitochondria.  The combination of
fluorescence microscopy and flow cytometry with elec-
tron microscopic investigations is a sensitive, precise and
comprehensive examination which helps discover sperm
mitochondrial abnormalities that cause asthenozoospermia
[119].  Successful ICSI in a case of severe asthenozoo-
spermia that is the result of non-specific axonemal alter-
ations and abnormal or absent mitochondrial sheaths has
been reported [120].  The application of ICSI proce-
dures in such patients implies introduction of the whole
spermatozoon into the ooplasm and raises the question
of potential risks for the derived embryo attributable to
the transmission of paternally inherited abnormal mito-
chondrial DNA into the ooplasm of the oocyte.  One study

has evaluated the risk of heteroplasmy (mosaicism of
paternal and maternal mitochondria) in 27 newborns born
after ICSI procedures.  Heteroplasmy was shown in a
frequency of 0.1–1.5% (which is considered to be nor-
mal and so far does not appear to be alarming) [121].

3.6  Reported congenital abnormalities and neurophy-
chiatric development in children born after ICSI

Given the concerns from what has been already dis-
cussed in the present communication, it is important to
analyze the outcome of some prominent ICSI programs
and that of the ESHRE ICSI Task Force.  The reported
results from prenatal diagnoses in pregnancies achieved
by ICSI techniques, indeed, showed a tendency for a
higher frequency of aneuploidy of the sex chromosomes
when compared with naturally conceived children [51,
67, 122–125].

Prospective data from Brussels have addressed the
genetic consequences of the use of ICSI techniques in
two consecutive studies evaluating 1 987 and 2 889 in-
fants born after ICSI trials [51, 123, 126].  The outcome
of ICSI techniques concerning the karyotypes, the ex-
istence of congenital abnormalities and the somatic or
mental development was recorded.  In total, 1.66% de
novo chromosomal abnormalities of the autosomes and
the sex chromosomes in equal proportions were found
with an additional 0.92% of inherited structural chromo-
somal abnormalities (eight balanced and one inbalanced)
from the father.  Major congenital abnormalities were
shown in a percentage equal to 2.3% of the total number
of the children delivered.  Fetal deaths were observed in
a frequency of 1.1% after the 20th week of pregnancy.
The second study compared the data between ICSI (n =
2 889) and IVF infants (n = 2 995) born in the periods
1991–1999 and 1983–1999, respectively.  Using the same
criteria and follow-up period, the ICSI group did not show
an increased risk for major malformations or complica-
tions in comparison with the IVF group [51, 123].  Other
studies comparing IVF with ICSI or ICSI-children ver-
sus children in a general population did not show any
excess risk for ICSI children with the exception of the
appearance of hypospadias (compared with the lower
frequency of hypospadias in the general population),
probably related to the paternal subfertility or to the hor-
mones the mother received during the beginning of preg-
nancy [127, 128].

Although there is a subpopulation of non-obstructed
azoospermic men where the etiology of azoospermia has
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a genetic basis [115, 129], there is no evidence for sig-
nificantly higher risks for congenital abnormalities in in-
fants born after ICSI procedures with epididymal or tes-
ticular spermatozoa (compared with naturally conceived
offspring) [123,126,130–132].  Furthermore, replace-
ment of frozen/thawed embryos generated by ICSI was
not accompanied by a significantly higher incidence of
congenital abnormalities in the newborns.  In another
report from Sweden, data concerning 1 139 children born
after ICSI procedures were reviewed [127].  A consi-
derable frequency of 7.6% of congenital abnormalities
was observed and less than half of these abnormalities
were minor.  In that study, the relative risk of ICSI chil-
dren to show a congenital abnormality was 1.75% but
when this risk was corrected for twins or triplets it
dropped to 1.19%.  The only congenital abnormality with
the alarmingly high relative risk of 3% was hypospadias.
In other studies, the somatic development of children
delivered post-ICSI techniques has been shown to be
normal, whereas evaluation of mental development and
fertility of the offspring need longer and more pervasive
studies [125].

In order to reduce the potential risks of ICSI proce-
dures for the fetus/newborn, cytogenetic analysis in hap-
loid male gametes (recovered either from ejaculates or
testicular biopsy samples) might be recommended be-
fore ICSI procedures are carried out in men with low
sperm counts or in azoospermic men.  Counseling and
PGD or PND are of paramount importance.

Mental and neuropsychiatric development in children
delivered after ICSI techniques have been addressed in
two successive reports.  Both reports lacked a conclu-
sion that supported a major abnormality in ICSI children
or a significant deviation from the normally naturally
conceived population apart from a) the findings concern-
ing the presence of hypospadias [127, 128], or b) the
complications related to multiple gestations [125, 130].
In a recent study [133], it was shown that singleton ICSI
and IVF 5-year-olds are more likely to need health care
resources than naturally conceived children.  In addition,
in that study, it was found that ICSI children presented
with more major congenital malformations and both ICSI
and IVF children were more likely to need health care
resources than naturally conceived children.  In another
study [134], apart from a few interaction effects between
mode of conception and and demographic variables, no
differences were found when ICSI, IVF and naturally
conceived scores on the WPPST-R and MSCA Motor

Scale were compared.  Nevertheless, the aforementioned
interaction effects could indicate that demographic
variables, such as maternal age at the time of birth and
maternal educational level, play different roles in the cog-
nitive development of IVF and ICSI children compared
with naturally conceived children.

3.7  Risks and consequences of chromosomal abnormali-
ties in ICSI children

Pooled data from a survey of results of international
trials point towards a slightly elevated frequency of sex
chromosome abnormalities in ICSI children (compared
to the general population).  Overall ICSI results (in terms
of percentages of chromosomal abnormalities in fetus
karyotypes) do not appear to be significantly different
compared with those of IVF [51, 123].

In general, the outcomes of IVF and ICSI trials are
similar [51, 123].  The incidence of de novo numerical
sex chromosomal anomalies in ICSI children ranges from
0.23–0.83%, which appears to be slightly higher com-
pared with the 0.19% reported in the literature for the
general population.  De novo numerical autosomal chro-
mosome abnormalities in ICSI children range from 0.5–
1.4%.  The latter percentage is 3 to 10 times higher than
that in the general population (0.14%).  Concerning the
percentage of de novo structural chromosomal re-
arrangements, there is a significant (3 to 4 times) in-
crease from 0.07% in the general population to 0.23–
0.27% in ICSI children [51, 123, 130–132].  In chil-
dren born after ICSI techniques are carried out, most of
these rearrangements are reciprocal and therefore do not
have phenotypic consequences in the carriers.  Never-
theless, these rearrangements might be responsible for
the generation of abnormal male gametes by meiotic
malsegregation leading to chromosomally abnormal off-
spring postfertilization [130, 131, 135].  Male carriers of
numerical or structural chromosomal abnormalities might
father offspring with abnormal and meiotically incompe-
tent cell lines at the age of reproduction after ICSI tech-
niques [75, 136].  There are reports of low pregnancy
rates in couples with primary testicular damage (after
assisted reproductive technology), probably as a result
of a generalized tendency of chromosomal nondisjunc-
tion [16].  In addition, ICSI with testicular spermatozoa
has been proven to be less successful in men with non-
obstructive azoospermia compared with men with ob-
structive azoospermia [137].  The increased chromo-
somal aneuploidy in testicular spermatozoa from men
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with non-obstructive azoospermia might explain the lower
fertilization and pregnancy rates observed in that study
[137].  Consistently, Aytoz et al. [138] have shown, af-
ter ICSI techniques, that within a group of couples that
underwent ICSI techniques with ejaculated spermatozoa,
the rate of intrauterine death was higher in a severely
defective sperm subgroup than in better quality sperm
subgroups.

The higher percentage of chromosomal abnormali-
ties in ICSI-children compared with the general popu-
lation is probably related to the parental chromosomal
abnormalities (mainly in the father) [51, 123, 125, 139].
This increase in chromosomal aberrations after ICSI
procedures might also result from the selection of
spermatozoa, which would otherwise be unable to
naturally fertilize an oocyte [117, 126, 130–132].  In a
study comprising a large number of prenatal tests car-
ried out on pregnancies that were the result of ICSI
techniques, a sixfold increase in sex chromosomal
aberrations and a twofold increase in autosomal chro-
mosomal aberrations was reported [130–132].  In ad-
ditional studies, a significantly higher rate of de novo
chromosomal abnormalities in amniocentesis was ob-
served in ICSI offspring relating mainly to a higher
number of sex chromosomal abnormalies and partly
to a higher number of autosomal structural abnormali-
ties [51, 123].  This finding was related to sperm con-
centration and motility of the ICSI participants.  The
significantly higher rate of observed inherited abnor-
malities in the ICSI prenatal tests compared with pre-
natal tests in the general population was related to a
higher rate of constitutional chromosomal anomalies,
mainly in the fathers [51, 123].  In addition, post-ICSI
increases in sex chromosomal aberrations might be a
result of non-random chromosomal positioning and
defects in male gamete nuclear decondensation after
the ooplasmic injections of non-acrosomally reacted
spermatozoa [140].

In a recent study, Bonduelle et al. [141] carried out
a medical follow-up study of 5-year-old ICSI children
and compared the findings with a population of children
born after natural conception.  Growth assessed as sta-
ture at follow-up was similar in the two groups despite a
higher rate of preterm birth and low birthweight in the
ICSI children.  Common diseases and chronic illnesses
occurred at similar rates in both groups.  More ICSI
children underwent surgical intervention and required
other therapies.

3.8  Exogenous DNA and HIV transmission risks from
use of ICSI procedures

HIV infection or gamete contamination by exogenous
DNA do not belong to genetic or epigenetic risks.  However,
they represent an issue of major concern in ICSI
procedures.  Transmission of viral elements, especially
retroviruses which have the ability to integrate and trans-
pose in the human genome, might represent a consider-
able risk.

In more than 1 000 insemination cycles, artificial in-
semination involving HIV-seropositive males did not ap-
pear to be accompanied by transmitting the virus and
250 successful pregnancies were reported [142].  In
addition, ICSI procedures using HIV-positive frozen se-
men samples have resulted in the generation of embryos
free from the HIV virus [143–145].

Although in vitro preparation of semen samples by
washing and gradient separation before the ICSI tech-
niques are carried out appear to block the transmission
of viruses, there is a potential risk of exogenous DNA
transmission to the embryo.  This hypothetical risk is
based on studies in Rhesus Macaque monkeys showing
that exogenous DNA bound to spermatozoa can be trans-
ferred by ICSI to the embryos and, thus, it might confer
some new genetically transmitted characteristics [146].
Consequently, hypothetical binding of exogenous DNA
on human spermatozoa processed for ICSI might alter
the germline genetic constitution of the human offspring.
A cautious manipulation of semen samples and use of
strict safety procedures to exclude sources of DNA con-
tamination during sperm manipulation are recommended
in ICSI laboratories.  For this reason in assisted repro-
duction programs, PGD procedures (using PCR) should
be carried out in isolated facilities and thermal cyclers
with UV decontaminators (that are separated from the
ICSI laboratories) to eliminate the risk for transmission
of exogenous DNA during ICSI procedures.

3.9  Genetic and epigenetic risks from the intraooplasmic
injection of in vivo produced spermatids

The introduction of the intracytoplasmic injection of
spermatids or secondary spermatocytes as an alternative
mode of therapy of non-obstructed azoospermic men
who are negative for testicular foci of spermatozoa raised
several concerns for probable genetic risks associated
with the immaturity of the early haploid male gamete [16,
147–149].  The genetic risks of ooplasmic injections of
human round spermatids might be a) inherent to the popu-
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lation of men this procedure is applied to (i.e.  transfer-
ring chromosomal abnormalities/gene deletions to the
offspring); or b) inherent to the procedure per se.  The
latter risks might be associated with abnormalities in the
a) centrosomal components of the early haploid male
gamete (defects in the reproducing element of the cen-
trosome might cause zygotic spindle abnormalities after
ooplasmic injections of spermatids) [16]; b) nuclear
proteins; or c) spermatid oocyte-activating factor (i.e.
the male gamete substance that triggers the cascade of
ooplasmic events that result in the resumption of meiosis
of the female gamete post-ooplasmic injections) [150–
152].  In addition, it is particularly tempting to investi-
gate in humans whether the process of genomic imprint-
ing has been completed at the round spermatid stage
[153].  This hypothesis has been evaluated in experi-
mental mammals (Mus musculus) reproduced through
ooplasmic injections of spermatids.  The results have
shown that there is no difference in the genomic im-
printing establishment process between normally repro-
duced animals and animals generated from spermatids
[154].  Studies in animals suggest that mouse genomic
imprinting (Figure 2) is complete at/prior to the primary
spermatocyte stage [155, 156].  The results of studies in
our laboratory indicate that the genomic imprinting pro-
cess in the rabbit and the rat has been completed at/be-
fore the round spermatid stage [157, 158].  It should be
emphasized that even if genomic imprinting has not been
completed at the round spermatid stage, the genomic

imprinting process might be completed postfertilization
(during early embryonic development) [16, 148, 159].
Regarding genomic imprinting abnormalities-related di-
seases after ooplasmic injections of spermatids, there is
no evidence today of imprinting defects in the offspring
[16].  However, because methylation of some imprinted
genes is supposed to occur during spermatogenesis or
during early embryonic development [16, 159, 160], ad-
ditional studies are necessary in order to evaluate the
methylation status of genes in children delivered after
ooplasmic injections of spermatids.

Data on congenital and chromosomal abnormalities in
children born after intracytoplasmic injection of sperma-
tids are not sufficient to draw safe conclusions.
Nevertheless, one report is alarming and indicates major
abnormalities in children delivered after ooplasmic in-
jections of spermatids [161].  Other studies on larger
series did not detect an increased incidence of malfor-
mations after ooplasmic injections of spermatids [162–
164].  However, considering that the number of human
pregnancies achieved after ooplasmic injections of sper-
matids is limited, no definite conclusions can be drawn
on the safety of ooplasmic injections of early haploid
male gametes.  Ejaculated round spermatids in the rat
appear to have a lower reproductive capacity than tes-
ticular round spermatids [158].  This might be attribut-
able to morphological defects in the ejaculated round sper-
matids (Figure 1).

Another alteration the male gamete undergoes during

Figure 2. Methylation patterns of a maternally expressed gene during male germ cell development (see reference 226). 13.5 dpc:
Prospermatogonia demonstrate an absence of methylation on both the maternal (red color) and the paternal (green color) alleles; 15 dpc: The
paternal allele scquires hypermethylation, in contrast, the meternal allele remains unmethylated. The blue line indicates methylation of the
respective allele; 18.5 dpc: Maternal alleles begin to acquire methylation just prior to birth; After birth: Both parental alleles are fully
methylated.
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spermiogenesis in vivo is the replacement of the nuclear
histones (low disulphide bond proteins) by protamines
(high disulphide bond proteins).  Histones are protecting
the early haploid male gamete DNA (within the cytoplasm
of the oocyte) after ooplasmic injections.  The presence
of low disulphide bond proteins around the round sper-
matid DNA after round spermatid nuclei injections
(ROSNI) or after round spermatid injections (ROSI) has
been considered to be a factor responsible for the low
outcome of these techniques.  In contrast, post-ICSI,
protamines are protecting the spermatozoal DNA within
the ooplasm.  In the case of ooplasmic injections of early
spermatids, the survival of the injected spermatid DNA
within the ooplasm might be detrimentally affected by
the absence of protamines [16].

Post-ICSI, the resumption of meiosis of the female
gamete depends on/is facilited by the presence of the
oocyte-activating factor present in mouse, rabbit and hu-
man spermatozoa [150–152, 157, 165].  Defects in the
expression/functionality of the oocyte activating factor
after ooplasmic injections of early spermatids might ac-
count for their lower fertilization and pregnancy rates
(comparatively with those after ICSI procedures).  Al-
though Kimura and Yanagimachi [150–152] and Sofikitis
et al. [158] have shown that the oocyte-activating fac-
tor has not been expressed in mouse and rat round
spermatids, respectively, several studies suggest that the
oocyte activating factor has been expressed in the round
spermatid in the human or the rabbit [16, 166–168].

Healthy offspring have been delivered after prede-
condensed sperm or even spermatid head injections into
the female pronuclei of preactivated rat oocytes [169].
The latter study might suggest that novel methods of
assisted syngamy have been developed and such a tech-
nology in the future might have a role in cases of human
ICSI failure as a result of lack of development of male
pronucleus (post-ICSI) or inability of the male and fe-
male pronuclei to fuse.

3.10  Genetic risks after assisted reproduction techniques
using in vitro generated male haploid germ cells

Although induction of human meiosis and spermio-
genesis in an in vitro culture system represents an at-
tractive alternative solution for the therapeutic manage-
ment of men who are positive for spermatogonia/sper-
matocytes but negative for haploid cells in their testes,
the application of diploid germ cell in vitro culture tech-
nique might be limited by ethical considerations or safety-

related factors.  For instance, application of ooplasmic
injections of human haploid cells generated in in vitro
culture systems containing xenogeneic Sertoli cells [111,
164, 170] is susceptible to ethical considerations and risks
regarding contamination of the human germ cells by ani-
mal viruses or animal molecules.  Similarly, a major draw-
back for application of ooplasmic injections of haploid
male gametes derived in in vitro co-culture systems of
human diploid germ cells with supporting animal feeder
somatic cells, such as Vero or STO cells, concerns the
risks of transmitting infectious agents to the human germ
cells [164].  The growth phase of Vero cells is usually
achieved in the presence of newborn calf serum, which
still poses the risk of virus or animal molecule transmis-
sion to the cultured human cells [171].  In addition, per-
formance of assisted reproduction procedures using im-
mature haploid germ cells derived or cultured in vitro is
susceptible to genetic and epigenetic risks.

Kimura et al. [156] attempted to induce both male
meiotic divisions in vitro within the cytoplasm of oo-
cytes injected with primary spermatocytes.  They ob-
served a high frequency of abnormalities in male meiotic
chromosomal behavior when mouse primary spermato-
cytes were injected into the ooplasm of MII oocytes.  It
seems that most primary spermatocytes have not ac-
quired the competence for normal chromosomal segre-
gation within the ooplasm and/or that the ooplasm does
not provide adequate factors required to segregate the
spermatocyte chromosomes that are still synapsed.

In humans, Sousa et al. [163] reported that most of
the embryos, produced after ooplasmic injections of sper-
matids that had been generated in vitro, showed sex chro-
mosomal abnormalities.  The high abnormal genetic con-
stitution of the derived human embryos might have been to
the result of: a) a deficient male meiotic process in vitro; or
b) the immature DNA-status of the in vitro generated
haploid cells.  Tesarik et al. [166–168] showed a very
rapid progression of meiosis and/or spermiogenesis dur-
ing in vitro culture of human primary spermatocytes and/
or round spermatids, respectively.  It is possible that the
action of multiple checking mechanisms, which control/
coordinate the male gamete morphogenetic and molecu-
lar transformations during spermatogenesis in vivo, can-
not be completed (totally or partially) during the in vitro
culture of spermatogenic cells.  The overall result might
be a high percentage of abnormal products of meiosis
and/or spermiogenesis in in vitro culture systems.  This
is consistent with the fact that an increase in DNA deg-
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radation of round spermatids during in vitro culture has
been observed [168].  Thus, it appears that the clinical
employment of ooplasmic injections of in vitro derived
haploid germ cells might be associated with genetic risks
attributable to the completion of meiosis or a part of the
spermiogenetic process under in vitro conditions.

3.11 Epigenetic risks related to assisted reproduction tech-
niques

Genomic imprinting abnormalities might also have
an impact on assisted reproductive techniques in which
spermatozoa are injected into oocytes.  Only one copy
(paternal or maternal) of an imprinted gene is active
(Figure 2) and the other, the inactive one, is epigeneti-
cally “marked” by histone modification, cytosine methy-
lation or both [172].  It has been shown that the mam-
malian primordial male germ cell genome undergoes ex-
tensive epigenetic reprogramming, namely demethylation
(i.e. erasure of the previous imprint), to assure later at
the gamete stage the establishment/consolidation of the
maternal or the paternal imprint.  Epigenetic marks origi-
nating from the parental cells must be erased at an early
stage.  Both copies of an imprinted gene are marked de
novo during spermatogenesis according to the sex they
originate from.  After the consolidation of the new imprint,
one of the two copies remains silent.  After fertilization,
imprinted genes maintain their methylation status and
they escape the reprogramming (demethylation and reme-
thylation) process.  In contrast, it has been suggested
that the methylation process in the unmethylated genes
continues postfertilization [16, 159].

Alarming reports have recently raised concerns re-
garding the increased incidence of children with rare
imprinting disorders, namely Angelman and Beckwith-
Wiedemann syndromes (BWS), among children con-
ceived by assisted reproduction.  Two independent groups
from USA and Europe have reported cases of Angelman
syndrome conceived by ICSI techniques with sporadic
imprinting defects [4, 173].  The mosaic methylation pat-
tern detected in one of the patients and the absence of
imprinting center mutations might support the evidence
of a postzygotic epigenetic defect [174].  Furthermore,
the analysis of chromosome 15 methylation pattern in a
limited number of ICSI children (n = 92) did not show
methylation abnormities [175].

BWS, a rare genetic condition (1/15 000), has also
been reported to show a more frequent incidence among
ICSI children [176–178].  It is worth mentioning that

the study of DeBaun et al. [176] was prospective and
identified an incidence of BWS equal to 4.6% among the
children delivered after assisted reproduction techniques
versus the background rate of 0.8% in the USA.  Im-
printing mutations of two BWS related genes were found
in 5/6 children with BWS syndrome born after assisted
reproduction [176].  The identification of Angelman syn-
drome and BWS syndrome among ICSI children indi-
cate the need for additional prospective studies.

In the above mentioned reports concerning BWS and
AS patients, the epigenetic defect was found in the ma-
ternal allele suggesting that the abnormality might not be
related to the spermatozoa used for ICSI.  Whether or
not imprinting defects are related to the culture conditions,
media used to the hyperstimulation protocols or other
epigenetic defects related to the development of male in-
fertility but yet unidentified remains to be elucidated [179].

As we have recently mentioned [164], achievement
of the induction of meiosis of male diploid germ cells
and partial completion of spermiogenesis under in vitro
conditions might not be accompanied by all the epige-
netic modifications the male gamete normally undergoes
during the respective stages of spermatogenesis under
in vivo conditions.  Additional epigenetic modifications,
such as DNA methylation, genomic imprinting, RNA si-
lencing and modification of histones, are important for
the in vitro derived haploid male gamete nucleus in order
to survive within the ooplasm and trigger the cascade of
events that lead to normal embryonic development [174].
Acceleration of the cytoplasmic and nuclear maturation
events that occur in vitro in cultured male germ cells
might cause a disturbance of epigenetic reprogramming
resulting in aberrant gene expression, abnormal pheno-
typic characteristics, and defects in the male gamete ca-
pacity to fertilize the oocyte and induce normal embry-
onic development.

As we have emphasized in the above paragraphs, an
important issue is whether genomic imprinting establish-
ment has been completed in immature diploid or haploid
male gametes.  Kerjean et al. [180] showed that the me-
thylation patterns of H19 and MEST/PEG1 genes are
established as early as spermatogonial differentiation in
humans.  In contrast, Ariel et al. [181] showed that sper-
matogenesis-specific genes undergo late epigenetic re-
programming at the level of epididymis.  Hajkova et al.
[182] have shown that mouse PGC exhibit dynamic
changes in epigenetic modifications between days 10.5
and 12.5 post coitum.  PGC acquire genome-wide de
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novo methylation during early development and migra-
tion into the genital ridge.  However, following their en-
try into the genital ridge there is a rapid erasure of DNA
methylation of regions within imprinted and non-imprinted
loci.  Thus, there is an active demethylation process ini-
tiated upon the entry of PGC into the gonadal anlagen.
The time of reprogramming of PGC is of paramount
importance, because it ensures that germ cells in the males
acquire a certain epigenetic state prior to the differentia-
tion of the definitive male germ cells in which new pa-
rental imprints are then established [182].  Defects in the
epigenetic reprogramming in any cultured (in vitro) im-
mature diploid germ cell population might result in the
inheritance of epimutations in the haploid cells generated
from the culture of the immature germ cells.  The fact
that DNA methyltransferase is present in spermatids might
be an argument against the hypothesis that genomic im-
printing is complete at the round spermatid stage.  An-
other hypothesis is that even if the genomic imprinting
has not been completed at the round spermatid stage, the
male gamete genomic imprinting might be completed af-
ter the transfer of immature haploid spermatogenic cells
within the ooplasm [150, 151], or even during the early
embryonic development [16, 159].  This hypothesis is
supported by the fact that waves of DNA methylation
have been shown during early embryonic development,
the blastocyst stage and the time of implantation [159].
There are several studies providing evidence for the pres-
ence of activity of the DNA methyltransferase during
early embryonic development [16, 159].  In addition,
from a limited data available, it appears that the imprint
establishment has been completed in humans by the time
the spermatid stage is reached [154, 174].  Although most
of the above studies tend to suggest that the genomic
imprinting process in humans has been completed prior
to the spermatid stage in vivo, it is unknown whether
the rapidly proceeding meiosis and early spermiogenesis
occurring under conditions present in in vitro culture
systems allow the completion of genomic imprinting pro-
cess within these relatively short periods.  This is a ques-
tion of clinical importance because abnormalities in the
completion of genomic imprinting during in vitro game-
togenesis may be manifested (postfertilization) as tumor
susceptibility or/and tumorgenesis.

There are epigenetic differences (Figure 2) between
the parental genomes during the evolution of genomic
imprinting in mammals.  These epigenetic differences
between the parental genomes are enhanced in the zy-

gote by means of DNA demethylation of the paternal
genome soon after fertilization, whereas the maternal
genome shown de novo methylation [183].  Such oppo-
site effects on the parental genomes within the same
oocyte cytoplasm might be achieved by the differential
binding of stored cytoplasmic factors to the parental ge-
nomes [184].  Arney et al. [184] have shown a prefer-
ential interaction of HP1beta protein with the maternal
genome immediately after sperm entrance into the mouse
oocyte.  Paternal genome binding of HP1beta is only de-
tected at the pronuclear stage.  Considering that it is un-
known whether oocytes at the two pronuclei plus se-
cond polar body stage that have been fertilized by in vitro-
generated human haploid male gametes (generated from
the culture of human primary spermatocytes of men with
primary testicular damage) [164, 185] show normal pa-
ternal genome-binding of HP1beta, it appears that the
probability that ooplasmic injections of in vitro-derived
early haploid male gametes being accompanied by epige-
netic risks related to a lack of or abnormalities in the
pattern of binding of HP1beta protein with the paternal
genome cannot be ruled out.

It should be emphasized that in the theoretical case
of injecting an imprint-free immature male germ cell
nucleus into an oocyte, fertilization might be anticipated
but it should lead to embryonic lethality.  Transplantation
of imprint-free PGC nuclei into oocytes has resulted in
embryonic lethality, partly as a result of abnormal ex-
traembryonic tissues resulting from the inappropriate si-
lence or activation of imprinted genes [186].  So far,
imprinting during passage through at least some stages
of spermatogenesis is essential because a male genome
devoid of imprints cannot acquire all of them within a
mature oocyte [186].

In addition to the above described epigenetic factors,
defects in other epigenetic factors might contribute to
the abnormal characteristics of embryos produced by
ICSI procedures [16, 163].  Abnormalities/defects in the
expression of oocyte-activating factor in spermatozoa (see
above paragraphs) might result in defects in the capacity
of the male gamete (after its entrance into the ooplasm) to
activate the cascade of ooplasmic events that result in re-
sumption of meiosis of the female gamete, fertilization and
normal embryonic development.  Furthermore, deficiency
in the functionality of the reproducing element of the
centrosome [187], or the presence of an abnormal num-
ber of centrioles in spermatozoa, might cause aberrant
spindle formation after ICSI techniques resulting in ab-
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normal embryonic development.  Defects in the pater-
nally inherited centrosomic components are known to
represent a reason for ICSI failure (to induce appropri-
ate embryonic development) after the entrance of the
male gamete into the ooplasm [187].  In addition, Luetjens
et al. [188] showed that abnormalities in the male ga-
mete nucleus condensation could retard the sperm X
chromosome decondensation resulting in embryonic aneu-
ploidy through zygotic mitotic errors.  Thus, we cannot
rule out the probability that a) abnormalities in the nuclear
condensation status of spermatozoa or b) abnormalities
in the capacity of spermatozoa to decondense at an ap-
propriate chronological order within the ooplasm (post-
ICSI) might cause chromosomal abnormalities in the
embryos.

3.12  Risks concerning transgenerational transmission of
an acquired genetic or epigenetic defect

Apart from the genetic and epigenetic risks already
described (which are substantiated by the abnormalities
found in the offspring of patients treated with assisted
reproduction procedures), there are also other less obvi-
ous risks.  These risks may be called “risks concerning
transgenerational transmission of an acquired genetic or
epigenetic defect” and are mainly of two types: a) those
resulting from the action of aggressive cancer treatment
on gametes with overall genetic and teratogenetic
consequences; and b) those that are anticipated in the
future generations of ICSI offspring and concern de-
fects in tumor suppression genes and increased suscep-
tibility of ICSI-children for tumor development.  It has
been reported that there is a higher incidence of retino-
blastoma among children conceived after assisted repro-
duction technology [189].

Although male gamete DNA damage might be inevi-
table during cancer treatment (i.e. chemotherapy, radia-
tion) there is no evidence today of increased frequency
of genetic defects or congenital malformations among
children (either naturally conceived or conceived after
ICSI techniques) fathered by men who have undergone
chemotherapy.  Nevertheless, DNA breaks are induced
by reactive oxygen species produced either by aggres-
sive cancer therapy or during sperm preparation tech-
niques for carrying out assisted reproductive technology
or by microorganisms contaminating the lower genitouri-
nary tract [190, 191].  Furthermore, DNA denaturation
and fragmentation are strongly correlated with a decreased
reproductive potential [192].  Fertilization of an oocyte

(using ICSI techniques) with a DNA-damaged sperma-
tozoon might be accompanied by a risk for a genetic
disease in the offspring.

3.13  Risks related to mutations of genes regulating the
spermiogenesis process

The process of spermiogenesis is very sensitive to
genetic alterations.  Alterations in the expression of mo-
lecular agents in the testicular tissue as a result of de-
fects in gene expression (null mutations, gene over-
expression, exogenous gene expression and gene
misexpression) could lead to a deficiency in the comple-
tion of specific steps of spermiogenesis.  These defects
in gene expression might result in spermatogenic arrest
at the round spermatid stage or in the production of few
spermatozoa with anatomical or functional defects.  Al-
though men with arrest at the round spermatid stage or
oligozoospermic men with anatomically or functionally
deficient spermatozoa do not have reproductive potential
under in vivo conditions, ICSI procedures or ooplasmic
injections of spermatids might offer the latter men the
probability to father their own children.  However, the
bypassing via assisted reproductive technology of bio-
logical barriers related to defects in the spermiogenesis
process is accompanied by risks for transferring gene
defects to the male assisted reproductive technology
offspring.  The expression of phenotypic characteristics
(i.e. defects in spermiogenesis) in the offspring (generated
by assisted reproductive technology) depends on the
chromosomal location of the respective mutated gene,
the pattern of the inheritance of this gene and/or the pre-
sence of any type of mutations/alterations in the expres-
sion of this gene in the mother’s genotype.  To empha-
size the importance of mutations in genes regulating
spermiogenesis, we are describing below some genes
playing a role in the spermiogenesis process.

Histone replacement by transition proteins (TP) and
protamines during spermiogenesis might be affected by
disruption of the Tarbp2 gene, resulting in infertility and
oligospermia [193].  A partial or complete failure to syn-
thesize the protamines results in delayed replacement of TP
and the spermatids show abnormal nuclear morphogenesis,
developmental arrest and degeneration [193].  Premature
translation of Prm1 (pre-existing protamine 1) mRNA
cause precocious condensation of spermatid nuclear DNA
and abnormal head morphogenesis [194].  Successful
interaction of mature protamine-2 with chromatin is re-
quired for displacement of TP2 [195].  Step-15 sperma-
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tids in Camk4-/- mice show a loss of protamine-2.  These
animals are characterized by prolonged retention of TP2.
Mice lacking the major TP1 have been obtained after
targeted deletion of the Tnp1 gene.  Tnp1-/- mice show a
normal sperm production quantitatively, but only 23%
of the spermatozoa show any movement and most of
these spermatozoa do not show forward progression
[195,196].  In these animals, sperm heads with a blunted
or bent tip are seen in 16% of epididymal spermatozoa,
possibly generated by the abnormal chromatin conden-
sation that could reduce the rigidity of the fine apex of
the spermatozoon [195,196].  Tnp1 contains a cAMP-
responsive element (CRE) that serves as a binding site
for the CRE modulator (CREM).  CREM is involved in
the regulation of Tnp1 gene expression and human CREM
protein is synthesized in steps 1–3 round spermatids.  This
might explain why a reduction in Crem expression and a
lack of both CREM and TP1 have been shown in human
spermatids arrested at step 3 [197].  Mice with deletion
in Crem presented a spermatogenesis arrest at the round
spermatid step [198].

Deficiencies in intratesticular molecular factors as
a result of genetic defects affect the organization and
r eorga n i z a t i on  of  t he  cyt os ke le t on  dur i ng
spermiogenesis.  Thus, homozygous c-ros knockout
mice are sterile and the epididymal spermatozoa have
bent tails and compromised flagellar vigour within the
uterus [199].  Testicular haploid expression gene (THEG)
is expressed in round and elongated spermatids.  The
molecular products of this gene appear to play a role in
the spermiogenesis because abnormal or absent flagella
in mice with THEG dysruption have been shown and
might be to the result of an impairment of the assembly
of cytoskeletal proteins such as the tubulins [200].  A
specific block in spermiogenesis was observed in ho-
mozygous JunD-/- mice.  A lack of molecular factors
encoded by the latter gene results in an absence of fla-
gella in spermatids in the lumen of the seminiferous tu-
bules [201, 202].  The absence of JunD led to sperm
flagellar growth impairment.  Additional defects in sperm
nuclear and cytoskeletal morphology, and in mitochon-
drial localization can be observed in nectin-null mutant
mice.  Nectin-2 is a component of cell-cell anchoring
junctions, playing a role in the connection of the cytoskeletal
elements of neighbouring cells.  Thus, this molecular
system participates in the regulation of cell shape and
differentiation through signalling pathways [203].  Fur-
ther interesting observations on the male gamete cy-

toskeleton are shown in the null mutant for the zinc-
finger transcription factor Egr4.  In the latter animals,
the flagella is often fragmented, sharply kinked or have
tightly coiled distal ends.  Spermatozoa with heads that
are either separated entirely or bent sharply back on the
flagella are observed [202, 204].

In null mice for Sla12a2 gene (normally expressing
the Na+-K+-2Cl- co-transporter), few spermatids are
present but defects are striking when spermatids gradu-
ally acquire the features of spermatozoa [202].  De-
fects in the molecular system of Na+-K+-2Cl- co-trans-
porter result in morphological abnormalities of
spermatids.  Spermatids show abnormalities in the cap-
phase acrosomal vesicle and in the nuclear shape [205].
Other morphological abnormalities of the male gamete
are the result of the lack of the factors that are nor-
mally expressed by the CsnK2a2 gene.  CsnK2a2 could
be a candidate globo-zoospermia gene.  Mice with de-
fects in the expression of the CsnK2a2 gene show ab-
normalities in spermatid nuclear morphogenesis.  Fur-
ther abnormalities are observed in the nuclear and
acrosomal shape.

Robertson et al. [206] have shown that deficiency in
the production of aromatase enzyme cyp19 as a result of
targeted disruption of the cyp19 gene in ArKO mice results
in maturation arrest at early stages of spermiogenesis.
Round spermatids do not complete elongation and
spermiation.  Furthermore, morphological defects in
round spermatids are seen in tubules exhibiting
spermiogenic arrest.  Furthermore, abnormalities in the
acrosomal structure are observed.

Deficiency in the production of an epithelial, micro-
tubule-associated protein due to defects in the expres-
sion of the E-MAP-115 gene results in abnormal shape
and progressive degeneration in all condensed spermatids.
Abnormalities in the microtubular manchette and in nuclear
shape are also observed [202, 207].  Subnormal expres-
sion of the molecular products of the gene Tg737 that en-
codes the components of the raft protein complex, desig-
nated Polaris in the mouse and IFT88 in both Chlamy-
domonas and mouse, results in defective ciliogenesis and
abnormalities in flagellar development in spermatids as
well as asymmetry in left-right axis determination [208].
Polaris/IFT88 is detected in the manchette of mouse and
rat spermatids.  Intramanchette transport has the fea-
tures of intraflagellar transport machinery.  In addition,
it facilitates nucleocytoplasmic exchange activities dur-
ing spermiogenesis [208].
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3.14  Preimplantation genetic diagnosis (PGD)-biopsy
techniques and risks

Monogenic and chromosomal abnormalities can be di-
agnosed using genetic material obtained from polar bodies
(PB), blastomeres or trophectoderm cells [209].  Couples
who have had previous unsuccessful assisted reproductive
trials or have a risk of transmitting to the offspring a genetic
disorder related or unrelated to their infertility status might
benefit from the application of PGD.  PND is the most widely
applied procedure, however, it is often followed by iatrogenic
termination of a pregnancy associated with a fetal recessive or
dominant disorder or with a fetus numerical or structural chro-
mosomal abnormality [210, 211].

The clinical application of PGD has a number of limi-
tations concerning: a) its diagnostic value; b) the avail-
ability of oocytes, zygotes or embryos for biopsy; and
c) the implantation or pregnancy rates after the healthy
embryo transfer [212].  Embryonic biopsy, as an inva-
sive method, might also have risks related to the post-
PGD embryonic development and, furthermore, to the
health of newborns [22].  For instance, there is evidence
that acid Tyrode solution (commonly used to carry out
PB biopsy) affects the quality and the development of
the embryos that have undergone biopsy, despite the fact
that the aspiration of both PB does not cause a detrimen-
tal effect on the cleavage of the zygote [213].  Currently,
the usage of acid Tyrode solution is gradually being re-
placed by laser drilling of the zona pellucida and, thus,
the utilization of chemical substances is substituted by
the use of a high-energy beam.  Studies comparing the
two methods have been in favor of the laser drilling in terms
of implantation and pregnancy rates post-biopsy [214].

Analysis of data regarding the carrying out of PGD
has indicated that the PB biopsy is not used as often as
the blastomere biopsy and is practically limited to cases
of oocyte selection (to carry out ICSI) in female carriers
of chromosomal translocations [211, 212, 215].  To carry
out blastomere biopsy, at least one blastomere is aspi-
rated from all day-3 embryos.  A second (additional to
the first) blastomere biopsy offers reassurance of the
validity and reliability of the diagnosis, although it in-
creases the workload of the clinical PGD procedure.  The
implantation and pregnancy rates related to the two cell
(blastomeres) biopsy are similar to the one cell biopsy.
Thus, it appears that the aspiration of a second blas-
tomere does not have a detrimental affect on further
embryonic development [216].  In addition, there is evi-
dence proving that transfer of blastocysts (on day 5)

that have been generated from embryos that had under-
gone biopsy on day-3 embryos does not compromise
the implantation process [217].

Regarding the potential risks arising from the blas-
tomere biopsy at the 6–8 cell stage embryo, there is con-
cern originating from the evidence that the X chromo-
some inactivation process is initiated at this developmen-
tal stage [218].  Biopsy of one or two blastomeres from
a limited pool of cells might disrupt the 50%/50% ratio
of the random X chromosome inactivation balance [219].

Pediatric evaluation of children born after ICSI plus
PGD did not show significant differences compared with
children born after the use of ICSI trials [22, 220].

Biopsy of the trophectoderm is an alternative method
to the blastomere biopsy with a limited experience to date
[209].  However, it should be emphasized that blastocysts
provide a sufficient amount of genetic material for reliable
diagnosis.  In addition, blastocysts that have undergone
biopsy have an acceptable capacity for implantation [221].

Couples with infertility related genetic abnormalities
might benefit from the use of PGD.  For these couples
the balance between risks and benefits supports the role
of PGD to select genetically competent embryos and to
avoid the PND during the pregnancy period.

4    Guidelines and conclusions

According to the guidelines suggested by a group of
clinical and research experts from 12 national scientific
societies, there are two types of genetic tests for ICSI
candidates: a) the recommended tests; and b) the op-
tional tests according to the clinical indications [222].
The genetic profiles of both members of each couple
participating in assisted reproductive technology programs
has to be carefully assessed and proper genetic counsel-
ing and a basic genetic evaluation (Table 1) will assist all
couples to make informed decisions.  The highly recom-
mended diagnostic tests for infertile males participating
in assisted reproductive programs include the karyotype,
microdeletions of the Y chromosome and the CFTR
mutation analysis.  Additional genetic tests for KAL 1
mutations, androgen receptor, 5 α-reductase 2, hemo-
globinopathies and sperm-aneuploidy analysis might be
additionally suggested for selected subpopulations of in-
fertile males (Tables 1, 2).

Data regarding thousands of children evaluated in
independent studies, pooled data form surveys of world
results and the ESHRE ICSI task force, as well, show
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that the proportions of the most common congenital ab-
normalities in children delivered after ICSI techniques
are not significantly different compared with those in the
general population, with the exception of hypospadias
[223–226].  Reservations concern the definitions of ma-
jor and minor abnormalities, and the abnormalities that
should be evaluated in a long run, such as deficiencies in
mental development.

The genetic profiles and constitution of gametes from
males treated with ICSI are variable, however, it appears
that a relationship exists between the severity of the sper-
matogenic impairment and the chromosomal defects in
the spermatozoa (either testicular or ejaculated samples)
[48, 114].  In addition, germline genetic defects in sper-
matogenesis have to be taken into consideration when
ICSI is suggested [65].

Genetic counseling by experienced scientists should
emphasize that even mild or isolated phenotypic defects
in the father may lead to more severe and clinically im-
portant abnormalities in the offspring.  Non-obstructed

azoospermic men with complete deletions of AZFa or
AZFb region of the Y chromosome (Table 2, Figure 3)
should not be advised to undergo testicular biopsy.

The development of ICSI as a widely applied and
prominent reproductive technology has intensified the
need for thorough evaluation and laboratory investiga-
tions towards two directions.  The first direction is the
follow-up of children derived by ICSI techniques and
the second target is the analysis/study of the genetic
causes underlying male infertility.  Results from both di-
rections might give rise to conclusions regarding the
pathogenesis and the role of male infertility/primary tes-
ticular damage in the generation of male gamete (and
subsequently embryonic) chromosomal abnormalities.

Today, ICSI might be additionally applied as a result of
other indications, for example PGD.  PGD can assist the
genetic safety of ICSI.  The effective collaboration of fer-
tility specialists and geneticists, taken together with the in-
troduction of thorough genetic evaluation in assisted re-
production programs, is essential to reduce the genetic risks
from the application of modern reproductive technology.
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