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Abstract

Luminal acidification in the epididymis is an important process for the regulation of male fertility.  Low pH and low
bicarbonate concentration are among key factors that keep spermatozoa in a dormant state while they mature and are
stored in this organ.  Although significant bicarbonate reabsorption is achieved by principal cells in the proximal
regions of the epididymis, clear and narrow cells are specialized for net proton secretion.  Clear cells express very high
levels of the vacuolar proton pumping ATPase (V-ATPase) in their apical membrane and are responsible for the bulk of
proton secretion.  In the present paper, selected aspects of V-ATPase regulation in clear cells are described and
potential pathologies associated with mutations of some of the V-ATPase subunits are discussed.  (Asian J Androl
2007 July; 9: 476–482)

Keywords:  proton pump; H+-ATPase; clear cells; bicarbonate resorption

.Review .

DOI: 10.1111/j.1745-7262.2007.00299.x
www.asiaandro.com

© 2007, Asian Journal of Andrology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences. All rights reserved.

Correspondence to: Dr Sylvie Breton, Massachusetts General
Hospital, Simches Research Center, Program in Membrane Biology,
185 Cambridge Street, CPZN 8204, Boston, MA 02114, USA.
Tel: +1-617-726-5785     Fax: +1-617-643-3182
E-mail:  sbreton@receptor.mgh.harvard.edu

1    Introduction

The establishment of male fertility depends on the
production of a large number of spermatozoa by the testis,
followed by several maturation steps, which occur in
the male excurrent duct.  For example, sperm acquire
their capacity to become motile while they travel through
the epididymis, but they are kept in a quiescent state dur-
ing this maturation process [1–7].  The establishment
and maintenance of a low luminal pH and bicarbonate
concentration in the lumen of the epididymis [8, 9] are
among key factors that keep spermatozoa dormant [1, 10].
It is particularly crucial that the bicarbonate concentra-
tion be maintained low during their storage period be-
cause spermatozoa express an adenylyl cyclase that is
directly activated by bicarbonate [11–13].  Capacitation

of spermatozoa occurs after mixing with the prostatic
and seminal vesicle fluids and during transit through the
female reproductive tract.  This complex process is ac-
companied by an influx of bicarbonate, which is abun-
dant in prostatic fluid, leading to a rise in intracellular
cAMP and subsequent phosphorylation of several pro-
teins by protein kinase A (PKA) [14, 15].  This bicarbo-
nate-induced cAMP elevation also leads to the inhibition
of epithelial Na+ channel (ENaC), which is located in the
sperm membrane.  ENaC inhibition contributes to the
hyperpolarization that accompanies capacitation [16].  In
addition, the calcium channel, CatSper1, located in the
sperm membrane and which also participates in
capacitation, is strongly activated by alkaline pH [17].
Low luminal pH in the epididymis, therefore, prevents
the activation of CatSper1 and capacitation in the
epididymis.

The establishment of low pH and a low bicarbonate
concentration in the lumen of the epididymis has been
known for a number of years, thanks to the pioneering
work of several groups [8, 9, 18].  However, the mecha-
nisms responsible for transepithelial acid/base transport
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in the epididymis have been described only recently
(reviewed in [19]).  Significant sodium-dependent bicar-
bonate reabsorption occurs in the epididymis [8, 9].  This
organ is embryologically related to the kidney with which
it shares several acid/base transporters that have been
implicated in renal bicarbonate reabsorption, including
the apical sodium hydrogen exchanger, NHE3, the
basolateral sodium bicarbonate co-transporter NBCe1-A
(originally known as sodium bicarbonate cotransporter
[NBC]), and the basolateral chloride bicarbonate ex-
changer AE2 [20–22].  While NHE3 is exclusively ex-
pressed by epididymal principal cells, NBCe1-A and AE2
are also present in narrow and clear cells.  The apical
sodium hydrogen exchanger, NHE2, has also been de-
scribed in principal cells [23].  Interestingly, the level of
expression of these transporters varies in different re-
gions of the rat epididymis.  For example, NHE3 is most
abundant in the initial segments and proximal caput, and
is not detected in the distal cauda [20], whereas NHE2 is
absent from the initial segments [23].  Our laboratory
has previously shown that apical acid extrusion follow-
ing an acid load is reduced by approximately 50% in the
presence of the Na/H exchanger inhibitors, EIPA and
HOE694, in initial segment tubules isolated and perfused
in vitro [20].  These results indicated that a pancreatic-
like HOE694-sensitive NHE3 was expressed in these seg-
ments of the epididymis.  Epididymal principal cells also
have a high cytosolic carbonic anhydrase activity, and
they express the membrane-associated carbonic anhy-
drases CAIV [19, 24, 25] and CAXIV [26] in their apical
and basolateral membrane.  Therefore, principal cells of
the initial segments of the epididymis are fully equipped
to achieve net bicarbonate reabsorption.  Throughout the
epididymis, clear cells participate in net proton secretion.
In the distal regions, these cells become more numerous
and their contribution to luminal acidification increases.
The following sections describe selected aspects of va-
cuolar proton pumping ATPase (V-ATPase)-dependent
proton secretion by clear cells in the distal portion of the
epididymis and proximal vas deferens.

2    Expression of V-ATPase in clear cells

In the distal regions of the epididymis, luminal fluid
is maintained at the acidic pH of 6.8 [8, 9].  Interestingly,
the level of expression of the transporters that are in-
volved in bicarbonate reabsorption in the proximal re-
gions progressively diminishes towards the distal por-
tions of the epididymis and the participation of clear cells
in proton secretion appears to increase.  As mentioned
above, NHE3 is not expressed in the rat distal cauda
epididymidis.  In this epididymal region, the number of

clear cells increases significantly (Figure 1) compared
with the caput epididymidis.  These cells are part of the
“mitochondria-rich” cell family and are among a few
specialized cell types that express the vacuolar proton
pumping H+-ATPase (V-ATPase) in their plasma mem-
brane [27].  Whereas the V-ATPase is ubiquitously ex-
pressed and is responsible for the acidification of intrac-
ellular organelles in all cell types (reviewed in [28]), it is
also expressed in the apical plasma membrane of acidi-
fying cells, including epididymal clear cells [29–32] and
renal intercalated cells [28], where it plays a key role in
luminal acidification.  Bafilomycin, a specific inhibitor of
the V-ATPase, markedly reduces the rate of net proton
secretion measured with an extracellular proton-selec-
tive electrode in cut-open vas deferens, a segment that
also contains clear cells [29, 33, 34].  In addition, clear
cells express the cytosolic carbonic anhydrase CAII
(Figure 2) and the basolateral transporters NBCe1-A and
AE2 [20–22, 29, 30, 33].  However, functional analysis
shows that proton secretion by clear cells of the vas
deferens is independent of chloride, while it is inhibited
by disulphonic stilbenes (SITS), therefore identifying NBCe1-
A as a potential player in this process [33].  In addition, the
carbonic anhydrase inhibitor acetazolamide markedly reduces
luminal acidification in the rat cauda epididymidis perfused in
vivo [18], abolishes bafilomycin-sensitive net proton secre-
tion in the cut-open vas deferens [33], and induces the inter-
nalization of V-ATPase in clear cells of the cauda epididymidis
[11].  Therefore, the V-ATPase and CAII are key players

Figure 1. Cauda epididymidis perfused in vivo and labeled with
anti-vacuolar proton pumping ATPase (V-ATPase) antibodies.
Numerous clear cells, stained for the B1 subunit of the V-ATPase
(green), are detected in the cauda epididymidis. Luminal spermato-
zoa are absent from these perfused tubules. Inset: high magnifica-
tion of a clear cell showing V-ATPase staining in apical microvilli
and sub-apical vesicles. Nuclei are stained in blue with DAPI.
Bar = 150 µm. Inset: bar = 5 µm.
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in luminal acidification by clear cells of the distal region
of the epididymis and proximal vas deferens.

3    Plasticity of clear cells: cell shape changes and
membrane insertion of the V-ATPase

Immunofluorescence and electron microscopy studies
revealed that the V-ATPase is abundantly expressed in
the apical pole of clear cells, where it is distributed be-
tween sub-apical vesicles and the apical plasma mem-
brane (Figure 1 and Figure 2A) [11, 34, 35].  Functional
data showed that proton secretion by these cells is regu-
lated through dynamic V-ATPase recycling, and that an
increase in V-ATPase plasma membrane expression is
correlated with an increase in proton secretion [11, 34,
35].  Studies performed on the cauda epididymidis per-
fused in vivo showed that the sub-cellular localization of
the V-ATPase is markedly modulated by the luminal envi-
ronment [11, 35].  At the physiological pH of 6.8, the V-
ATPase is distributed between apical microvilli and sub-api-
cal endosomes.  In contrast, when perfused with an alka-
line solution (pH 7.8), the V-ATPase is mainly located in
apical microvilli and very few sub-apical V-ATPase-la-
beled vesicles are detected.  This accumulation of the
V-ATPase in the plasma membrane, which occurs within
10–15 min, is accompanied by a significant elongation of
apical microvilli that contain a high density of V-ATPase
molecules [11].  Therefore, clear cells show a remark-
able plasticity in response to physiological stimuli to in-
crease their rate of V-ATPase-dependent proton secretion.

4    Soluble adenylyl cyclase (sAC) is a bicarbonate
sensor that regulates the apical insertion of the V-
ATPase

The mechanisms by which epithelial cells can re-

spond to variations in the pH of their extracellular envi-
ronment are still poorly understood.  Our recent studies
have identified the bicarbonate-activated adenylyl cyclase,
sAC, as a key player in the response of clear cells to
variations in pH and bicarbonate concentration in the rat
epididymal lumen [11].  This enzyme is directly activated
by bicarbonate ions but is not modulated by pH [12].
We have shown that sAC is enriched in clear cells from
rat epididymides, compared with principal cells
(Figure 3).  Interestingly, acetazolamide completely in-
hibited the apical insertion of V-ATPase in response to
luminal alkalinization, indicating that the production of
intracellular bicarbonate by CAII is a key step in the tar-
geting of the V-ATPase to the apical membrane [11].  In
the presence of acetazolamide, clear cells show a com-
plete internalization of the V-ATPase and no apical mi-
crovilli [11], and net bafilomycin-dependent proton secre-
tion is completely abolished [33].  Furthermore, addition
of luminal bicarbonate (12 mmol/L) at constant pH (7.1)
induces a significant re-localization of the V-ATPase into
well-developed microvilli, a response that is abolished by
the sAC inhibitor, 2-hydroxyestradiol [11].  Finally, the
cAMP permeant analogue, cpt-cAMP, mimics the bicar-
bonate and alkaline pH-induced V-ATPase apical
accumulation.  These results suggest that intracellular
bicarbonate elevation following either an increase in lu-
minal pH or direct addition of luminal bicarbonate acti-
vates sAC to produce cAMP, leading to the accumula-

Figure 2. Human epididymis stained for the vacuolar proton pump-
ing ATPase (V-ATPase) and carbonic anhydrase II (CAII). (A):
Clear cell showing the presence of V-ATPase (subunit E) in apical
microvilli and sub-apical vesicles (green). (B): Double-labeling for
the V-ATPase (subunit E; green) and CAII (red). Abundant CAII is
detected in the cytosol of a clear cell, which also expresses the V-
ATPase in its apical pole. Bars = 5 µm.

Figure 3. High expression of soluble adenylyl cyclase (sAC) in clear
cells. Double labeling of rat cauda epididymidis for sAC (red) and
vacuolar proton pumping ATPase (V-ATPase) (subunit E; green) re-
veals that clear cells (labeled in their apical pole for V-ATPase) contain
abundant sAC throughout their cytoplasm. Spermatozoa and sur-
rounding muscle cells are also stained for sAC. Bar = 10 µm.  Repro-
duced with permission from J Biol Chem,  Pastor-Soler et al. [11].
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tion of the V-ATPase in the apical membrane of clear
cells from the rat epididymis.

It is interesting to note that principal cells of the epi-
didymis have the ability to secrete bicarbonate when ac-
tivated by basolateral stimuli [36, 37].  This process de-
pends on the presence of cystic fibrosis transmembrane
conductance regulator (CFTR), located in the apical mem-
brane of principal cells, which works in conjunction with
a basolateral Na/H exchanger NHE1 [23, 38].  An acute
increase in luminal bicarbonate concentration upon acti-
vation of the epithelium is proposed to “prime” sperma-
tozoa prior to ejaculation [39].  However, this process
would lead to an increase in luminal pH, which might be
detrimental if maintained for a sustained period.  We pro-
pose that clear cells respond to this rise in luminal bicar-
bonate by increasing their rate of proton secretion, after
activation of sAC [11, 19].  A potential mode of entry for
bicarbonate through the apical membrane might be the
electro-neutral sodium bicarbonate co-transporter, NBC3
(also known as NBCn1), which has been described in
the apical membrane of clear cells [40].  In this way,
activation of clear cells by luminal bicarbonate would
return the luminal pH to its resting acidic value.

5    Gelsolin participates in the regulation of V-ATPase
recycling via modulation of the actin cytoskeleton

We have shown that modulation of the actin cytos-
keleton is a key process in the regulation of V-ATPase
trafficking and recycling in clear cells [35].  Some sub-
units of the V-ATPase, including subunits B1, B2 and C
directly interact with actin [41–43].  In addition, subunit
B1 also contains a C-terminal PDZ binding domain al-
lowing it to associate with Na+/H+ exchanger regulatory
factor 1 (NHERF1), a PDZ (PSD-95, Drosophila discs
large protein, ZO-1) protein that directly interacts with
actin-binding merlin-ezrin-radixin-moesin (MERM) pro-
teins [44].  The actin cytoskeleton is under very dynamic
remodeling in all cell types (reviewed in [45, 46]), in-
cluding clear cells, and we have shown that the actin-
capping and -severing protein, gelsolin, is highly expressed
in these cells [35].  Modulation of the activity of gelsolin,
using a permeant peptide that prevents its uncapping from
the actin filament and promotes actin depolymerization,
strongly increases the accumulation of V-ATPase in the
plasma membrane of clear cells even at the acidic lumi-
nal pH of 6.5.  Therefore, gelsolin-dependent actin depo-
lymerization induces either inhibition of V-ATPase en-
docytosis or activation of exocytosis [35].  The severing
property of gelsolin is dependent on calcium [47, 48].
Chelation of intracellular calcium by 1,2-bis (2-
aminophenoxy) ethane-N,N,N',N'-tetraacetic acid tetrakis

(acetoxymethyl ester, BAPTA-AM) inhibits the pH-in-
duced apical V-ATPase accumulation [35].  In addition,
the phospholipase C (PLC) inhibitor, U-73122 also abol-
ishes this response [35].  We propose that maintenance
of the actin cytoskeleton in a depolymerized state by
gelsolin promotes calcium-dependent apical membrane
accumulation of the V-ATPase in response to luminal al-
kaline pH conditions.

6    Male fertility and V-ATPase

The functional importance of the acidification ca-
pacity of the epididymis in male fertility was recently
clearly demonstrated by the finding that male mice lack-
ing the transcription factor Foxi1 are infertile [49].  Foxi1
is a major transcriptional regulator of several genes, in-
cluding the B1 subunit of the V-ATPase and CAII.  A
more alkaline environment in the epididymal lumen, ap-
parently due to the absence of both of these proteins,
results in impaired sperm maturation, leading to the in-
ability of spermatozoa to move up the female reproduc-
tive tract [49].  However, male mice that are deficient in
a functional B1 subunit alone (B1-/-), but continue to ex-
press CAII, are fertile, indicating that a compensatory
mechanism is in place in these mice [50].  We have re-
cently shown that the B2 subunit of the V-ATPase, which
is normally expressed in intracellular structures, moves
to the apical membrane of clear cells in B1-/- mice
(Figure 4) [31].  The fact that the lumen of the epididy-
mis of these mice is within the normal pH range con-
firms that the B2 subunit can compensate for the ab-
sence of B1.  Interestingly, these mice do not develop
metabolic acidosis when given a normal diet [50, 51], a
phenotype that was expected owing to the high expre-
ssion of B1-containing V-ATPase complexes in the api-
cal membrane of proton-secreting renal intercalated cells
of wild type mice (reviewed in [28]).  Therefore, it ap-
pears that the B2 subunit also compensates for the ab-
sence of B1 in intercalated cells of B1-/- mice [52].
However, humans harboring single point mutations of the
B1 subunit develop severe distal renal tubular acidosis
(dRTA), indicating significant impairment of V-ATPase-
dependent proton secretion in intercalated cells (reviewed
in [28]).  One possible explanation for this major differ-
ence in the phenotypes of B1-/- mice and humans with
mutated B1 is that the impaired B1 subunit protein with
single point mutations might assemble normally within
the V-ATPase holoenzyme, therefore preventing a com-
pensatory association of the B2 subunit.  The mecha-
nisms responsible for the insertion of the B2 subunit into
the V-ATPase holoenzymes that are targeted to the plasma
membrane in the absence of B1, compared with intrace-
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llular targeting of B2-containing V-ATPases in the pres-
ence of B1, are under current investigation in our
laboratory.  It will be very interesting to determine whether
or not humans harboring mutations of the B1 subunit are
infertile.  At the moment, most of these patients are juve-
niles and their fertility has not yet been assessed.

7    Conclusion

In summary, while significant bicarbonate reabsorp-
tion via principal cells occurs in the proximal regions of

the epididymis, net proton secretion by clear cells is an
important step in the establishment of a luminal acidic
environment in the epididymis.  The concerted action of
various acid/base transporters localized in principal cells
of the initial segments and caput (NHE2, NHE3, CAIV,
CAXIV, NBCe1-A, and AE2) and in clear cells through-
out the epididymis (V-ATPase, CAII, NBCe1-A, and AE2)
is crucial to the establishment and maintenance of a low
bicarbonate and low pH environment for the maturation
of spermatozoa.  Impairment of luminal acidification in
the epididymis has important consequences for sperm
maturation, which become unable to move up the female
reproductive tract.  Net proton secretion by clear cells is
regulated through recycling of V-ATPase-containing
vesicles to and from the apical membrane.  The bicar-
bonate sensor, sAC, which is highly expressed in clear
cells, is a crucial mediator of the response of these cells to
variations in the bicarbonate concentration and pH of the
luminal environment, at least in the rat epididymis.  Dy-
namic modulation of the actin cytoskeleton by gelsolin,
and an increase in intracellular calcium via the PLC-signal-
ing pathway are also significant contributors to the regu-
lation of V-ATPase-mediated net proton secretion in clear
cells.
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