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Abstract

Cysteine-rich secretory protein-1 (CRISP-1) is a glycoprotein secreted by the epididymal epithelium.  It is a
member of a large family of proteins characterized by two conserved domains and a set of 16 conserved cysteine
residues.  In mammals, CRISP-1 inhibits sperm-egg fusion and can suppress sperm capacitation.  The molecular
mechanism of action of the mammalian CRISP proteins remains unknown, but certain non-mammalian CRISP pro-
teins can block ion channels.  In the rat, CRISP-1 comprises two forms referred to as Proteins D and E.  Recent work
in our laboratory demonstrates that the D form of CRISP-1 associates transiently with the sperm surface, whereas the
E form binds tightly.  When the spermatozoa are washed, the E form of CRISP-1 persists on the sperm surface after
all D form has dissociated.  Cross-linking studies demonstrate different protein-protein interaction patterns for D and
E, although no binding partners for either protein have yet been identified.  Mass spectrometric analyses revealed a
potential post-translational modification on the E form that is not present on the D form.  This is the only discernable
difference between Proteins D and E, and presumably is responsible for the difference in behavior of these two forms
of rat CRISP-1.  These studies demonstrate that the more abundant D form interacts with spermatozoa transiently,
possibly with a specific receptor on the sperm surface, consistent with a capacitation-suppressing function during
sperm transit and storage in the epididymis, and also confirm a tightly bound population of the E form that could act
in the female reproductive tract.  (Asian J Androl 2007 July; 9: 508–514)
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1    The cysteine-rich secretory protein (CRISP) family

The cysteine-rich secretory proteins (CRISP) derive
their name from the relatively high abundance of cys-

teine residues (16) that are found in, and conserved
among, the members of the family [1, 2].  They are
members of the CRISP/Antigen 5/PR-1 (CAP) super-
family of proteins that are expressed in mammals, reptiles,
insects, plants and fungi and which all share in common
the highly conserved CAP domain [3–9].  With a few
exceptions, the CRISP proteins are expressed primarily
in the reproductive tracts of mammals and in the ve-
noms of various snakes and lizards [1, 9, 10].  The struc-
tural details of the CRISP proteins have been determined
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by crystal structure analysis of snake venom CRISP pro-
teins and the NMR solution structure of the cysteine-
rich domain of mammalian CRISP-2 [3, 11–13].  These
studies demonstrate that the CRISP proteins comprise
two distinct domains.  The amino terminal half of the
protein contains the CAP domain and is highly similar to
the structure determined for the pathogenesis-related (PR)
protein PR14a [11, 14, 15].  The carboxyl terminal half
of the protein is cysteine-rich, containing 10 of the 16
conserved cysteines, and has been referred to as the
cysteine-rich domain (CRD) [11].  The distal part of this
domain contains six conserved cysteines and is struc-
turally related to a family of cysteine-rich toxin proteins
found in sea urchins (i.e. Bgk and Shk) [3, 11].  The
proximal region contains four cysteines and appears to
act as a linker region between the CAP domain and the
CRD.  The high sequence similarity between the CRISP
family members allows relatively safe extrapolation of
these established structures to other family members.

Most of what are known about the molecular mecha-
nism of the CRISP proteins have been derived from stu-
dies of the toxin members of the CRISP family found in
various snakes and lizards, and most recently from a
study of the CRD of mammalian CRISP-2 (also called
Tpx-1) [10, 13, 16–20].  These studies demonstrate that
the CRISP proteins have ion channel blocking activity.
Helothermine, one of the most extensively studied CRISP
toxins found in the venom of the Mexican beaded lizard,
blocks both voltage-gated Ca2+ and K+ channels, as well
as ryanodine receptor Ca2+ channels [10, 17, 18].  Se-
veral snake venom CRISPs (i.e. natrin, PsTx, pseudecin)
have been shown to block Ca2+ and K+ channels and others
have been implicated in such activity by their ability to
block smooth muscle contraction [5, 16, 19–21].  The
region of the CRISP protein required for channel block-

ing activity has not been determined for the venom CRISP
to date.  However, it has been recently shown that the
CRD from mammalian CRISP-2 alters Ca2+ movement
through the ryanodine receptor channel [3].  This study
is important because it demonstrates a molecular activity
of a mammalian CRISP protein that is similar to that de-
monstrated for toxin CRISP proteins and it also demon-
strates that this activity lies in the CRISP domain.  This
result is consistent with the structural similarity of the
CRISP domain to the ion channel-blocking proteins Bgk
and Shk produced by sea urchins [22, 23].  On the basis
of the finding that the CRD of mammalian CRISP-2 has
channel-blocking activity, it has been proposed that this
region of the protein be referred to as the ion channel
regulator (ICR) domain [3].  The various domain fea-
tures of the CRISP proteins are illustrated in Figure 1.

Given that many members of the CAP superfamily do
not encode an ICR/CRISP domain, including the wasp
venoms, the plant pathogenesis resistance proteins, and the
mammalian GliPR proteins, it is likely that the CAP domain
performs an independent function.  This is best exemplified
by comparing the Xenopus laevis proteins XCRISP and
Allurin.  XCRISP, a true CRISP protein, is involved in the
degradation of the vitelline envelope and the ICR/CRD is
required for this activity [7].  Allurin, a CAP protein without
the ICR/CRD, is a chemo-attractant for spermatozoa and
this activity must reside in the CAP domain [24].  Mamma-
lian CRISP-1 inhibits sperm-egg fusion when incubated with
zona-free eggs and capacitated spermatozoa [25, 26].  Al-
though the molecular mechanism responsible for this inhi-
bition is not known, the region of CRISP-1 responsible for
blocking sperm-egg fusion has been localized to the CAP
domain [26].  This is the first activity reported for a CRISP
protein that is confined to the highly conserved region of
the PR domain.

Figure 1. The domain organization of the cysteine-rich secretory protein (CRISP) is shown with the primary amino acid sequence of
Stecrisp, a representative toxin CRISP protein that has been crystallized and its structure determined [11]. The CRISP/Antigen 5/PR-1
(CAP) domain comprises the majority of the sequence beginning at the amino terminus. The cysteine rich domain (CRD) is shown with its
hinge and ion channel regulatory (ICR) regions. The 16 conserved cysteines are highlighted in gray and the pattern of disulfide bonds are
shown by gray lines. The cysteine-cysteine disulfide bonds are contained within each domain of the protein. The dotted lines connect
adjacent amino acids at the boundaries of the domains.
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2    The mammalian Crisp gene family

The first CRISP protein described, which later be-
came known as CRISP-1, was found in the rat epididy-
mis by Cameo and Blaquier [27].  Later, a second CRISP
protein was discovered (TPX-1/CRISP-2) in the testis,
followed by a third (CRISP-3) expressed in several dif-
ferent tissues, including the salivary glands, prostate and
B cells [2, 28].  As the CRISP proteins were character-
ized from other species, their number designations (1, 2
or 3) were based, at least in part, on their tissue distribu-
tion patterns.  Therefore, the CRISP protein expressed
in the human epididymis was designated CRISP-1, as
were those from other species, and these have been as-
sumed to be orthologous to the murine Crisp-1 genes
[29–32].  The recent discovery of a fourth CRISP protein
(designated CRISP-4) in the mouse and, subsequently,
rat, has illuminated a flaw in the assumption that murine
(rat and mouse) Crisp-1 is orthologous to human and other
mammalian Crisp-1 genes [33, 34].  Murine CRISP-4 is
also produced in the epididymis, but in the more proxi-
mal caput epididymidis, and has much higher amino acid
sequence similarity to human CRISP-1 than does murine
CRISP-1 [33, 34].  The relationship of these mammalian
Crisp genes and the syntenic regions of their respective
genomes is illustrated in Figure 2.  The discovery of
murine Crisp-4 and the careful analysis of the human,
murine and rat genome, suggests that Crisp-1 in the mu-
rine species is an additional epididymal form of Crisp that
might not be present in humans and other mammals.
Additionally, mouse CRISP-1 and CRISP-3 might be the
products of a gene duplication event in that they are over

75% identical and are adjacent to each other in the mouse
genome.  There is no such duplication apparent in the rat
genome and, therefore, there might be no equivalent
Crisp-3 gene in the rat.  The presence of four Crisp genes
might be unique to the murine genome.

The discovery of the CRISP-4 proteins in the mu-
rine epididymis introduces two caveats into the study of
CRISP proteins in the rat or murine epididymis.  First, as
the true ortholog to human Crisp-1, murine Crisp-4 genes
and their products are the most relevant model system
with which to study the role of human CRISP-1 in repro-
ductive biology.  Second, the presence of both CRISP-1
and CRISP-4 proteins must be considered and ultimately
accounted for in the pursuit of CRISP functionalities in the
murine epididymis.  In contrast, the testicular CRISP-2 pro-
tein is well conserved from species to species and its
testicular expression is very consistent [28, 31, 35–37].
On the basis of sequence analysis in non-murine species,
human Crisp-3 does not appear to be a true ortholog of
Crisp-1 in the rat or of either Crisp-1 or Crisp-3 in the
mouse, as might be expected.  However, much work
remains to be done on the categorization of these mem-
bers of the Crisp family.

3    Protein D and E forms of rat CRISP-1

As first described by Cameo and Blaquier [27],
CRISP-1 was initially thought to be two proteins, which
were given the designation as bands D and E, corre-
sponding to their electrophoretic mobility on non-dena-
turing polyacrylamide gels.  Shortly after this report, Lea
and French [38] reported the isolation of an acidic epi-

Figure 2. The syntenic regions encoding the Crisp gene cluster in the human, murine and rat genomes are highly conserved. Each is flanked
by the Rhag gene and a cluster of beta defensin genes, with the PGK-2 gene contained within. This region in the murine genome is split
between chromosome 17 and 1.  Sequence comparison illustrates that the Crisp-2 genes in all three species are true orthologs, whereas the
human Crisp-1 gene is the ortholog of the mouse and rat Crisp-4 genes (boxes with dotted lines). The murine and rat Crisp-1 genes are highly
similar and appear to be orthologs, but the murine and human Crisp-3 genes are not.  Only the murine genome appears to harbor four Crisp
genes and the high degree of similarity between the murine Crisp-1 and Crisp-3 genes suggests that they might represent a gene duplication
event in the mouse.
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didymal glycoprotein, referred to as AEG, which turned
out to be proteins D and E.  The D and E proteins were
carefully characterized by Brooks [39] and no apparent
biochemical or immunological differences could be de-
monstrated between them.  Consequently, proteins D and
E were assumed to be isoforms of the same protein and
the name “Protein DE” became affixed to the protein.

Although initially believed to be immunogenically
identical, there is at least one epitope that distinguishes
the Protein E form of CRISP-1 from the Protein D form.
This epitope is recognized by monoclonal antibody 4E9
[40].  The 4E9 antibody was not developed by immuni-
zation with CRISP-1 polypeptides but by screening hy-
bridomas created after immunizing mice with a frac-
tion of rat epididymal proteins that bound to a ricin af-
finity column.  The protein recognized by mAb 4E9
turned out to be the E form of rat CRISP-1 [41, 42].
The epitope for mAb 4E9 was shown to be located at
the amino terminus of the protein that contributed ap-
proximately 2 kDa to the molecular weight based on
relative mobility in SDS-PAGE [42].  Recent compara-
tive mass spectroscopy (MS) analysis of tryptic frag-
ments of purified CRISP-1 D and E revealed that the
first tryptic cleavage site in the N-terminus of the D
form is uncleaved in the E form (Figure 3A).  The N-
terminal peptide fragment in the E form, covering the
combined first and second tryptic peptides from the D
form, was positively identified yet contained an addi-
tional 203 dalton substituent (Figure 3B).  This added
mass found in a peptide containing one serine and four

threonine residues is consistent with the hypothesis that
the E form of rat CRISP-1 contains an O-linked
glycosylation containing at least one N-acetylglucosamine
or N-acetylgalactosamine.  These two differences near
the amino terminus revealed by mass spectrometry (MS/
MS) analyses suggests that they might be contributing,
at least in part, to the unique 4E9 epitope on Protein E
(Figure 3C).  A detailed analysis of the glycosylation of
both Proteins D and E is currently underway to test the
hypotheses generated by this initial observation.

Although the molecular differences between the Pro-
tein D and E forms of CRISP-1 appear relatively subtle,
the sperm binding characteristics of Proteins D and E,
and likely their activities, are very different [43, 44].  We
have shown that Protein D is readily removed by gentle
washing and, therefore, appears to interact transiently
with the sperm surface [44].  We have also shown that
exogenous CRISP-1 will inhibit capacitation when rat
spermatozoa are incubated under capacitating conditions
[44].  We have recently refined these observations and
shown that Protein D exists in a binding equilibrium with
the sperm surface that is concentration-dependent
(Roberts et al., unpublished data).  In these same ex-
periments we have shown that the degree of Protein D
binding correlates well with the degree of capacitation
inhibition that is achieved by Protein D.  In contrast,
Protein E binds essentially irreversibly to the sperm sur-
face [43, 44].  In addition, the binding of Protein E to the
spermatozoa appears to require other proteins produced
by the epididymal epithelium and it is only the smallest

Figure 3. Mass spectrometry (MS) analysis of rat cysteine-rich secretory protein-1 (CRISP-1), a mixture of proteins D and E forms
containing the D form in at least 10-fold excess, and of purified rat Protein E. The absence of the N-terminal tryptic peptide in the E form
is apparent (A). The first tryptic peptide of pure Protein E was found in the spectrum but was found to carry an adduct of 203 daltons (B).
The weight of this adduct is consistent with an N-acetylglucosamine or N-acetylgalactosamine residue that may modify one of the four
threonines or the serine present in this peptide. The location of this adduct is illustrated in (C). CAP, CRISP/Antigen 5/PR-1; CRD,
cysteine-rich domain; rCRISP-1, rat CRISP-1.
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form (approximately 22 kDa) of Protein E that binds to
the spermatozoon (Roberts et al., unpublished data).  The
different characteristics of binding imply that Protein D
and Protein E are binding to different acceptor molecules
on the surface of the spermatozoon.  In fact, when rat
spermatozoa are exposed to a potent, non-specific pro-
tein cross-linking agent and then Proteins D and E are
analyzed by western blotting, it is apparent that the two
forms of CRISP-1 bind to, or are in close proximity to,
different proteins on the sperm surface (Figure 4).  The
Protein D form of CRISP-1, predominately detected by
anti-peptide antibody CAP-A, detects a cross-linked com-
plex at greater than 250 kDa (Figure 4A, arrow head).
MS analysis shows that this complex contains CRISP-1.
The identity of potential binding partners or near neigh-
bors is now being determined.  When this same western
blot is stripped and re-probed with monoclonal antibody
4E9, specific for the Protein E form of CRISP-1, the
pattern of cross-linked proteins is entirely different
(Figure 4B), indicating that the protein D and E forms of
CRISP-1 interact with, or are situated near, distinct sperm
proteins.  The molecular determinant(s) of the different
mechanisms by which Protein E binds to spermatozoa,
compared with Protein D, remain to be established.  Given
the distinct difference in binding behavior between Pro-
teins D and E, it appears unlikely that Protein E has the
same sperm function as does Protein D.

4    Summary

The CRISP family of CAP proteins are expressed in
the reproductive tissues of mammals, as well as in a few
additional tissues, and in the venoms of various reptiles.
Many of the venom toxins, and recently the mammalian
CRISP-2 protein, have been shown to have ion channel-
blocking activity.  Rat CRISP-1 is produced in two isoforms:
Proteins D and E.  The transient association of Protein D
with spermatozoa can be correlated with its inhibitory ef-
fect on capacitation, while the binding of Protein E to
spermatozoa, which is essentially irreversible, does not ap-
pear to be consistent with the observed effect of CRISP-1
on capacitation.  Cross-linking of Protein D and E to sper-
matozoa also produces very dissimilar patterns, indicating
independent mechanisms whereby these two forms of
CRISP-1 associate with the sperm surface.  We have re-
cently identified two differences between the Protein D
and E forms of rat CRISP-1: a loss of trypsin cleavage at
the position 9 arginine and a 203 dalton substituent in the
first 18 amino acids of the E form.  It remains to be deter-
mined if these distinctions contribute to the differences in
behavior of Proteins D and E.
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