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Androgenic regulation of novel genes in the epididymis
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Abstract

The epididymis is critically dependent on the presence of the testis.  Although several hormones, such as retinoids
and progestins, and factors secreted directly into the epididymal lumen, such as androgen binding protein and fibro-
blast growth factor, might play regulatory roles in epididymal function, testosterone (T) and its metabolites,
dihydrotestosterone (DHT) and estradiol (E2), are accepted as the primary regulators of epididymal structure and
functions, with the former playing the greater role.  To ascertain the molecular action of androgens on the epididymis,
three complementary approaches were pursued to monitor changes in gene expression in response to different hor-
monal milieux.  The first was to establish changes in gene expression along the epididymis as androgenic support is
withdrawn.  The second was to determine the sequence of responses that occur in an androgen deprived tissue upon
re-administration of the two metabolites of T, DHT and E2.  The third was to study the effects of androgen with-
drawal and re-administration on gene expression in immortalized murine caput epididymidal principal cells.  Specific
responses were observed under each of these conditions, with an expected major difference in the panoply of genes
expressed upon hormone withdrawal and re-administration; however, some key common features were the common
roles of genes in insulin like growth factor/epidermal growth factor and the relatively minor and specific effects of E2
as compared to DHT.  Together, these results provide novel insights into the mechanisms of androgen regulation in
epididymal principal cells.  (Asian J Androl 2007 July; 9: 545–553)
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1    Introduction

As early as 1926, pioneering studies by Benoit [1]
demonstrated that the epididymis was dependent on an
unknown testicular substance for maintenance of its
structure and functions.  This regulatory substance was
identified as testosterone (T) [2]; there have been nu-
merous publications on the response of the epididymis in
mammals to androgen withdrawal (for review see [3]).
Several lines of evidence have established that the active
androgen in the epididymis is not T, but its 5α-reduced
metabolite, dihydrotestosterone (DHT) [3, 4]; hence, ste-

roid 5α-reductase activity is a key regulator of androgen
action in this tissue [3–5].  In addition to androgens,
many other hormonal factors have been postulated to
play a role in regulating epididymal function [3, 6].  Of
special note is estradiol (E2), another metabolite of T.
Administration of estrogens has major effects on the
epididymis [7–9].  With the advent of specific aromatase
inhibitors and knockout mice for the two isoforms of
the estrogen receptor, it has become possible to resolve
some of the functions regulated by E2 in the epididymis.

2     Androgen and estrogen receptors in the epididy-
mis

The most prevalent androgen, T, is produced by the
interstitial cells (Leydig cells) of the testis on an ongoing
basis.  Concentrations of T in the seminiferous tubules are
10–100 times those found in serum [5, 10], and are essen-
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tial for the maintenance of spermatogenesis [11–13].  High
concentrations of T leave the testis through the efferent
ducts and, upon entry into the epididymis, are rapidly con-
verted to DHT [10], the most biologically active endo-
genous androgen, by the enzyme steroid 5α-reductase
and to E2 by the P450 enzyme, steroid aromatase, which
is found in spermatozoa [14].

The actions of both T and DHT are primarily medi-
ated by binding to the androgen receptor (AR), although
there is some evidence for cell-surface mediated andro-
gen action [15, 16].  Androgen receptors are found in
the epididymis of all species examined to date (rat, rabbit,
dog, ram, monkey and human) (for review see [3]).
Although only a single AR gene (approximately 110 Kb)
has been identified, polymorphisms of this gene have been
reported [17–20].  There are small changes in the con-
centrations of the mRNA for the AR along the epididy-
mis [21]; when these occur, they are usually coincident
with a small decline in the concentration of AR protein
down the epididymis [22].  In the rat and other species,
immunoreactivity to the AR is found throughout the duct,
primarily in principal cells [23], although other cell types
(basal and apical) also react [24, 25].

Clear evidence for the existence of estrogen recep-
tors (ER) in the epididymis of many species has existed
since the 1970s (for review see [3]).  However, it is only
with the advent of highly specific antibodies and knock-
out (KO) mice for the estrogen receptors, ERα and ERβ,
that proof of the presence of the receptors and the need
for E2 in the male excurrent duct system became evi-
dent [26].  The immunolocalization of ERα and ERβ
along the efferent ducts and epididymis of the human
and rat reveals that ERα is primarily expressed in the
efferent ducts and the proximal end of the epididymis,
whereas ERβ is found along the entire tissue [23, 24, 26].
The ERα KO mouse [27] is infertile owing to back pres-
sure atrophy of the seminiferous tubules, which results
from the inability of the efferent ducts and initial seg-
ment of the epididymis to re-absorb the large volume of
fluid secreted by the testis.  In contrast to the clear role
of the ERα receptor, the function of ER in the epididy-
mis is unclear [28].

3    Effects of androgen withdrawal on the epididy-
mis

The main approach to understanding the effects of
androgen withdrawal on the epididymis has been removal
of the testes.  Removing the testes, as the main source
of androgen and other testicular factors that have direct
input into the epididymis, serves to help resolve how the
epididymis is normally sustained; it also provides insight

into pathological conditions, such as hypogonadism [29],
and a better understanding of the consequences of male
aging (andropause), when androgen production shows a
marked decline [30].  It is clear that this approach causes
loss of not only androgens but also estrogens and any
other testicular factors that might affect the epididymis;
however, most of the effects of orchidectomy has been
ascribed to the precipitous fall in androgens [31, 32].
Orchidectomy causes a decrease in epididymal weight
that is less marked than that of sex accessory tissues,
such as the prostate or the seminal vesicles [33].  Unlike
other androgen-dependent male reproductive tissues, T
replacement in orchidectomized animals, even at supra-
physiological levels, only partially restores epididymal
weight; presumably, this is because of the large propor-
tion (nearly half) of epididymal weight that is attributable
to spermatozoa and the luminal fluid bathing them [33,
34].  In the androgen-deprived state, spermatozoa be-
come immotile, lose the ability to fertilize and die [35].
After orchidectomy, the epididymal luminal diameter and
epithelial cell height decrease and there is a relative in-
crease in the intertubular stroma [36].  The smooth en-
doplasmic reticulum content is dramatically reduced,
whereas the extent of the decline in the Golgi apparatus
is less pronounced [36–38].  Morphological changes in
principal cells suggest that these cells are particularly
sensitive to androgen levels, in contrast to the other epi-
thelial cell types [39].  The secretory function of princi-
pal cells becomes compromised in the androgen-deprived
state.  Principal cells undergo a striking loss of apical
microvilli from their surface, as well as lysosome
accumulation, vacuolization, disappearance of vesicles
from the cell apex, and increased endocytosis [39].

Withdrawal of androgen by orchidectomy induces a
wave of apoptotic cell death in the epididymis, beginning
in the initial segment and moving over several days to the
cauda epididymidis [31, 40].  Apoptosis in the initial seg-
ment seems to be caused by withdrawal of androgen and
of luminal components coming from the testis and is p53-
independent [31, 40].  Using the entire epididymis, ex-
pression of Bcl-2, an anti-apoptotic factor [41], was sup-
pressed by orchidectomy, followed by the appearance of
Fas and DNA fragmentation, suggesting that regression
of the tissue might be regulated via the Fas pathway [42].

To gain a better appreciation of the range of effects
of androgen withdrawal on the epididymis, gene expres-
sion profiling has been used in several studies [41, 43].
The first of these studies, showing changes in the pat-
tern of gene expression along the epididymis over the
first week after orchidectomy, was done in the rat [41].  A
transient upregulation in the expression of a select family
of genes along the epididymis was found.  Several an-
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drogen-repressed genes (e.g. glutathione peroxidase-1
[Gpx-1]), showed increased expression in the epididy-
mis after orchidectomy, whereas transcripts for many
others (e.g. glutathione S-transferases and calcium-bind-
ing proteins) declined throughout the epididymis after
orchidectomy.  Other genes coding for metabolism-as-
sociated proteins, transporters and alpha-1 acid glyco-
protein showed segment-specific regulation in the epi-
didymis after orchidectomy.  The expression of several
previously uncharacterized heat shock proteins and
apoptosis-associated genes was also found to change
dramatically.  Using the mouse, and observing changes
at only one fixed time point, Chauvin et al. [43] confirm

several of these findings.
To investigate the early response of apoptosis and sur-

vival genes that was activated after withdrawal and/or
immediate supplementation of androgen in the different
regions of the epididymis, we used rat apoptosis-specific
arrays (ORN-012, SuperArray) that contained 96 genes.
Male Brown Norway rats were orchidectomized and
treated with empty or T-filled implants designed to main-
tain serum T at control concentrations.  Rats were killed
shortly (12 h and 1 day) after orchidectomy and epi-
didymides were collected.  The time-dependent and re-
gion-dependent changes in gene expression on this array
are shown in Figure 1.

Figure 1.  Region-specific alterations in gene expression at 12 h and day 1 in adult Brown-Norway rats after orchidectomy and immediate
s.c. implantation of either empty or testosterone-filled polydimethylsiloxane implants designed to maintain serum testosterone (T) in the
normal physiological range.  Gene expression profiles were determined using the rat apoptosis-specific arrays (ORN-012, SuperArray).
Five replicates using tissues from different animals were made for each region and each condition.  Changes in gene expression were
considered significant if they were increased or decreased by at least 1.5-fold in three of five replicates.  IS, initial segment; Ca, caput
epididymidis; Co, corpus epididymidis; Cd, cauda epididymidis.
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In all treatment groups, less than 16% of the genes
on the array showed a differential expression as com-
pared to the control.  In the absence of T, 6–16% of the
genes were differentially expressed; the corpus and cauda
epididymidis were the regions most affected, at 12 h and
1 day, respectively.  T maintenance partially prevented
differential expression of genes, with only 4–9% of the
genes remaining differentially expressed.

At 12 h without T, most of the genes affected be-
longed to the tumor necrosis factor receptor (Tnfrsf)
and Bcl-2 families.  In the initial segment, Tnfrsf11b and
Tnfrsf26 were downregulated, whereas all the other
Tnfrsf members were upregulated in the caput, corpus
and cauda epididymidis.  No differentially expressed Bcl-2
family members were seen in the cauda epididymidis,
whereas Bmf, Mcl-1 and Bcl2a1 were upregulated in the
initial segment and caput epididymidis.  In the corpus,
Bcl-2, Bnip3, Bnip3l, Bad and Bok were all downregulated.
T supplementation prevented the differential expression
of all the Bcl-2 and Tnfrsf family members, except for
Bmf, Tnfrsf4 and Tnfrsf1b, which remained upregulated.

At day 1 without T, the initial segment showed no
genes differentially expressed, whereas Bad, Bnip3 and
Bnip3l were downregulated in the cauda epididymidis.  No
additional Tnfrsf members were affected in the caput and
corpus regions, whereas Tnfrsf11b/osteoprotegerin re-
mained downregulated in the initial segment.  In addition,
the inhibitor of apoptosis protein, Birc5/surviving, was
downregulated in all regions except the cauda, whereas all
regions except the caput showed an increased expression
of two repair proteins, Rad50 and Rad52.  T supplemen-
tation did not affect the pattern of differentially expressed
genes belonging to the Bcl-2 family.  Furthermore,
Tnfrsf11b remained downregulated in the initial segment,
but became upregulated in the caput, whereas Birc5 be-
came downregulated in the cauda.

These data, summarized in Figure 1, demonstrate that
there are rapid region-specific responses that result in
both selective upregulation and downregulation of se-
lected members of the Tnf and Bcl families.  The nor-
mally sustained repression of several genes associated
with apoptosis might account for the normal lack of cell
death seen in this tissue and the reported lack of sponta-
neous carcinomas originating in the epididymis [44].

4    Effects of hormone replacement on the regressed
epididymis

Once the epididymis has regressed, administration
of T has the ability to dramatically restore most of the
histological features of the epithelium.  Clearly, the lack
of spermatozoa and fluid prevents a return to control

organ weight [33].  Unlike the case with the prostate,
giving very high doses of T does not result in epithelial
hyperplasia [33].  Relatively few studies have examined
the sequence of events that occurs upon re-administra-
tion of androgens once the epididymis has regressed.
We have found that after administration of DHT to rats
that had been orchidectomized for 1 week, no signifi-
cant increase in weight occurs at day 0.5 or 1, the first
significant increase is seen at 3 days, and by 7 days the
weight has nearly doubled; interestingly, E2 administra-
tion had no effect.  Using orchidectomy and hormone
replacement after a one-week regression period, we ex-
amined the actions of the two active metabolites of T,
DHT and E2, on the sequence of gene expression re-
sponses in the epididymis to resolve the molecular events
associated with androgen action in this tissue.

Using Affymetrix Rat Genome 230-2 Microarray
chips containing 31 000 probe sets, gene expression pro-
file changes were observed in the initial segment and caput
of the regressed rat epididymides as early as 0.5, 1 and
7 days after replacement with either DHT or E2.  Differ-
ential expression was defined as those transcripts that
had a difference of twofold or greater in normalized val-
ues and were statistically different (significance level set
at P < 0.05); microarray results for a selected subset of
genes were confirmed by reverse transcriptase poly-
merase chain reaction (RT-PCR).

Interestingly, of the 1 059 genes that were affected
by orchidectomy after 7 days, the expression of approxi-
mately as many genes (546 genes) were upregulated as
were downregulated (513 genes).  After treatment for
7 days with DHT, over 75% of the genes returned to-
ward the control, un-orchidectomized values.  In contrast,
the expression of only 13 genes was altered by E2
treatment, and only 5 of these genes had been affected
by orchidectomy.  Among genes affected by DHT re-
placement after androgen deprivation, many genes be-
long to specific functional gene families.  These include
solute carrier family (Slc12a3, Slc15a2, Slc22a5, Slc9a2),
cell communication (Gja1, Gja4, Gjb3), cell growth,
regulation of cell proliferation and apoptosis (Ahr, Ar,
Plau, Pdgfc, Figf), signal pathway and signal transduc-
tion (Ramp3, Calcrl, Itpr3), proteolysis and peptidolysis
(Adam7, Adam9, Ctsc), and development (Acta1, Gas7,
Pppr2b2).  We shall focus on three genes affected by
DHT and one by E2.

Placentae and embryos oncofetal gene (Pem), a mem-
ber of the homeobox factor family, is expressed in Ser-
toli cell of the testis and in the epididymis, suggesting
that it plays an important role in sperm function [45].
Using transgenic mice that express Pem in Sertoli cell
during all stages of the seminiferous cycle, Pem was
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shown to regulate the expression of Sertoli cell genes
that encode proteins that serve to control premeiotic DNA
replication, DNA repair and chromatin remodeling in the
adjacent germ cells [46].  Although androgens are ne-
cessary but not sufficient for Pem expression in Sertoli
cells, we found that DHT was able to maintain the level
of Pem expression in the epididymis; the significant de-
crease found after orchidectomy was reversed and re-
turned to the control level after replacement with DHT
for 1 day.

Protein phosphatase 2 (formerly 2A), regulatory sub-
unit B (PR 52), beta isoform (Ppp2r2b), regulates the
activity of the PP2A catalytic subunit in spermatids, and
is involved in spermatogenesis, especially spermatid elon-
gation [47].  Although the mRNA for this gene has been
shown to be expressed in the rat brain and testis, it has
not been looked at in the epididymis.  We found that this
gene was highly upregulated after orchidectomy, and that
DHT suppressed its expression to control levels after
7 days.

Cysteine-rich secretory protein 1 (Crisp1), an andro-
gen-regulated secretory protein of the rat epididymis, binds
to the post-acrosomal region of the sperm head [48];
therefore, it is one of the sperm surface proteins thought to
be involved in the fusion of sperm and egg plasma
membranes.  We found that DHT treatment for 7 days re-
versed the suppression of expression caused by orchidec-
tomy to the control levels.

Although the expression of many genes is affected
by DHT, few genes responded to E2.  Chloride intracel-
lular channel 3 (LOC 296566) (Clic3) expression signifi-
cantly declined after orchidectomy; this change could be
reversed by E2 after 7 days.  CLIC proteins have been
identified in bovine epididymal spermatozoa [49] and are
likely to play significant roles in sperm function.

Therefore, it is clear that an androgen-dependent re-
gressed tissue, such as the epididymis, mounts a robust,
rapid response after exposure to DHT by both upregulating
and downregulating a number of genes well before any
structural changes are apparent; the response to DHT is
far more dramatic than that of E2.

6    Changes in gene expression in immortalized mouse
caput epididymal principal cells in response to andro-
gen withdrawal and re-administration

Several pure epididymal cell lines have been estab-
lished recently [50–53].  The cell lines developed in the
Orgebin-Crist lab (PC-1, DC-1, DC-2 and DC-3) are the
first immortalized epithelial cell lines of the epididymis
that have been shown to display tissue and initial seg-
ment/caput-specific gene expression [51].  They show a

similar polarity to principal cells in vivo in terms of their
distribution of cellular organelles, and retain the type of
junctional complexes seen between principal cells in situ.
They also express a number of principal cell markers
and are responsive to androgens.

To gain a comprehensive insight into gene expression
in following androgen withdrawal and supplementation,
we explored the androgen dependence of the PC-1 epi-
didymal cell line by using DNA microarrays [54].  Changes
in gene expression occurring 2, 4 and 6 days after andro-
gen deprivation and 2 days after androgen supplementa-
tion after being deprived of androgen for 2 or 4 days were
examined.  Four distinct patterns of gene expression were
activated following androgen withdrawal; the vast majority
of genes displayed an early or late transient increase in
expression levels.  A differential ability of rescue was seen
among androgen-regulated genes depending on the time
of androgen supplementation.  Many of the genes that
were rescued at 4 days were functionally linked by di-
rect interactions and converged on insulin like growth
factor-1 (IGF-1).  The ability for rescue after 4 days of
androgen deprivation was severely compromised in many
genes belonging to specific functional gene families (cell
adhesion, cell growth, apoptosis and cell cycle) and might
be mediated in part by changes in AR coregulator
expression.  Using a pathway analysis approach, a com-
mon node of several of the affected genes was IGF-1
(Figure 2).

7    Potential role of the insulin like growth factor
gene (IGF) family and epidermal growth factor (EGF)
in mediating androgen action

The insulin-like growth factor network is composed
of IGF-1 and IGF-2, mitogenic peptides involved in the
regulation of cellular proliferation, differentiation and
apoptosis [55].  IGF have a structural homology with pro-
insulin, and are mainly produced by liver and bone mar-
row [56].  Both IGF-1 and IGF-2 bind with high affinity
to the IGF-1 receptor, a tyrosine kinase located on the cell
membrane, and initiate mitogenic responses in cells [57,
58]; IGF exert anti-apoptotic and mitogenic effects in the
prostate [59].  Similarly, IGF-1 plays a crucial role in Leydig
cell maturation in the testis; null mutations for this growth
factor result in decreased levels of androgens, a poorly
developed epididymis, and infertility [60, 61].

A physiological role for IGF-1 in the regulation of epi-
didymal functions was hypothesized over 10 years ago as
judged by the varied immunohistochemical localization of
IGF-1 protein in the rat epididymis [62].  IGF-1R mRNA
and protein have also been localized in the epididymis [60,
63].  Adult mice with a homozygous null mutation of the
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IGF-1 gene are infertile dwarfs with reduced T produc-
tion and, consequently, reduced spermatogenesis and re-
productive organ size [60].  Interestingly, the epididymal
phenotype of IGF-1 null mice is more severe in the distal
regions of the tissue, with greater reductions in weight
and decreased tubule coiling.  We found that the expres-
sion of IGF-1 and IGF-1R was highest in the distal epi-
didymal regions [64].  These results are consistent with a
role for IGF signaling in the distal regions of the epididy-
mis (corpus and cauda epididymidis).  Further corrobo-
rating this conclusion is the demonstration of the unique
effects of 5α-reductase inhibitor treatment on the expres-
sion of IGF-1, and possibly IGF-1R, predominantly in the
corpus and cauda epididymidis [64].

IGF-binding proteins (IGFBP1-6) modulate the avail-
ability of unbound IGF for interaction with IGF-1R [65].
IGFBP-3 is the most prevalent of the six IGFBPs [66].
More than 90% of circulating IGF is bound to IGFBP-3.
IGFBP-3 is known to impair IGF action and inhibit cell
growth, either by blocking free IGF or through an IGF-

independent mechanism [67].  IGF and IGFBP-3 play
important roles in prostate epithelial cell proliferation,
apoptosis and tumor progression [68].  In silico analysis
identified that a putative androgen response element in
the IGFBP-3 promoter and 10 nmol/L of DHT (a growth
inhibitory dose) can induce IGFBP-3 expression in LNCaP
cells [69].  We analyzed the epididymal expression of
two high-affinity IGF binding proteins, IGFBP-5 and
IGFBP-6.  Again, these genes were more highly expressed
in the distal regions of the epididymis and were mainly af-
fected by 5α-reductase inhibitor treatment in these regions.
IGFBP-5 expression was particularly affected by treatment,
decreasing dramatically in the cauda epididymidis [64].

IGF-1 and EGF play synergistic critical roles in patho-
logical processes, such as carcinogenesis and wound heal-
ing [70].  The presence of EGF [71] and EGF receptors
[72] in the testes of different species implicates their
central role in the regulation of spermatogenesis [71, 73].
It was shown that removal of the submaxillary gland, the
tissue that produces most EGF, results in a major loss of

Figure 2.  Potential direct functional linkages between genes rescued by dihydrotestosterone (DHT) supplementation after 2 days of
androgen deprivation.  Genes significantly changing by at least 1.5-fold after androgen withdrawal and rescued by DHT supplementation
at 4 days were used as the starting group.  Mediators of androgen action were also included in the analysis.  Only genes that have been
directly linked to one another through a primary interaction in the literature to date are shown.  Arrows indicate the direction of the
interactions, + indicates positive influence, T junctions indicate inhibition, and the color and shape of the linkages indicate the type of
interaction between the two gene products (expression, regulation, binding or phosphorylation).  Modified with permission from Seenundun
and Robaire [54].
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spermatozoa from the epididymis that was reversed by
giving EGF; no effects on serum T or gonadotropins
were noted, implying a direct role of this growth factor
in regulating epididymal function [74].  Androgens in-
crease EGF binding sites in the rat prostate and modulate
the cellular proliferation of this tissue [75]; therefore,
suppression of EGF receptor signaling results in reduc-
tion in the incidence of prostate cancer metastasis [76].
The EGF receptor in the epididymis of non-human pri-
mates is located in both the basolateral and apical bor-
ders of the epididymal epithelial cells [77].  Furthermore,
immunohistochemical studies on C3H mice have shown
that the intracellular localization of the EGF receptor varied
along the epididymis; the staining was more intense in
the cytoplasm of principal cells in the caput and in the
apical cytoplasm in the corpus and cauda regions [78].
The EGF gene is expressed in the mouse epididymis in a
segment-specific manner: low in the proximal region of
the caput and increasing in the corpus [79].  However,
immunolocalization of EGF, IGF-1, IGF-1R and IGFBP-3
in the adult rat epididymis has not been clearly established.

The underlying mechanisms regulating IGFBP-3 ex-
pression and its functional role in epididymal cell growth
remain to be elucidated.  We speculate that EGF/IGF-1
interact intimately with androgens to regulate cell growth
and proliferation.  By taking a series of complementary
approaches to understand how the action of T and its
metabolites are mediated, both when initially withdrawn
and re-administered to the epididymis, we have identi-
fied several novel gene targets.  Some of these genes are
likely to be early steroid hormone response genes and
might prove to be powerful targets for the development
of drugs that will regulate epididymal functions for pur-
poses of controlling male fertility.
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