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Abstract

Aim: To analyze factors influencing the efficacy of hormonal suppression of spermatogenesis for male contraception.
Methods: A nested case-control study was conducted, involving 43 subjects, who did not achieve azoospermia or
severe oligozoospermia when given monthly injections of 500 mg testosterone undecanoate (TU), defined as partial
suppressors compared with 855 subjects who had suppressed spermatogenesis (complete suppressors).  Sperm
density, serum testosterone, luteinizing hormone (LH) and follicle stimulating hormone (FSH) concentrations at the
baseline and the suppression phase were compared between partial and complete suppressors.   Polymorphisms of
androgen receptor (AR) and three single nucleotide variants and their haplotypes of FSH receptor (FSHR) genes
determined by polymerase chain reaction (PCR) and DNA sequencing technique were compared between 29 partial
and 34 complete suppressors.  Results: Baseline serum LH level was higher and serum LH as well as FSH level during
the suppression phase was less suppressed in partial suppressors.   Additionally, in a logistic regression analysis larger
testis volume, higher serum FSH concentrations alone, or interaction of serum LH, FSH, testosterone and sperm
concentrations were associated with degree of suppression.   The distribution of polymorphisms of AR or FSH
receptor genes did not differ between partial and complete suppressors.   In cases with incomplete FSH suppression
(FSH > 0.2 IU/L), the chances of reaching azoospermia were 1.5 times higher in the subjects with more than 22 CAG
triplet repeats.  Conclusion:  Partial suppression of spermatogenesis induced by 500 mg TU monthly injections is
weakly influenced by hormonal and clinical features but not polymorphism in AR and FSHR genes.   (Asian J Androl
2008 Sep; 10: 723–730)
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1     Introduction

The goal of hormonal male contraception is induction
of azoospermia or severe oligozoospermia to the levels
required for reliable prevention of pregnancy [1–3].
However, the heterogeneity response of subjects to hor-
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monal suppression of spermatogenesis remains an unre-
solved problem.  Despite marked and sustained suppres-
sion of serum gonadotrophins, suppression of spermato-
genesis is incomplete in a minority of subjects in most
studies.  Such variability in response is significant be-
tween and within ethnic groups [4, 5], and is a key issue
influencing clinical efficacy, general acceptability and
wider applicability of hormonal male contraceptives.

While seeking an explanation for the variability in
response, previous studies have revealed differences in
pretreatment hormone values [6, 7], intratesticular testos-
terone (T) metabolism [8] and in the sensitivity of the
pituitary-hypothalamic feedback system to exogenous T
[9, 10].  In recent years an increasing body of evidence
has shown that individual response to drug therapy at the
molecular level is in part determined by genetic polymor-
phism, resulting in subtle differences in protein action or
drug metabolism [11].

Based on previous findings, the potential factors that
might influence the efficacy of hormonal male contracep-
tion, including clinical parameters, hormone values and
genetic polymorphism in androgen receptor (AR) and
follicle stimulating hormone receptor (FSHR), were mea-
sured and assessed in the present nested case-control
study to identify predictors of partial (or incomplete)
suppression of spermatogenesis with hormonal male
contraception.

2    Materials and methods

2.1  Clinical protocol
The contraceptive efficacy study was an open-label,

multicenter, phase III clinical trial with World Health
Organization (WHO) standard monitoring, and consisted
of a 2-month baseline period prior to a 30-month treat-
ment period and a 12-month recovery period.  The study
enrolled 1 045 healthy fertile Chinese men, aged 20–
45 years, from 10 family planning service centers through-
out China.  After screening of participants and their part-
ners for eligibility, subjects entered the treatment period
and received monthly injections of testosterone
undeconate (TU) in 500 mg doses for up to 6 months
(suppression phase) followed by a 24-month efficacy
phase.  Injections were administered and recorded by re-
search nurses at each center.  Injections outside a time
window of 2 days were considered missed.  During the
suppression phase 190 subjects discontinued the trial,
including 43 subjects who failed to reach azoospermia

or severe oligozoospermia (≤ 1 × 106/mL) and were de-
fined as partial suppressors, while 855 subjects who had
suppressed spermatogenesis (≤ 1 × 106/mL) were defined
as complete suppressors and met entry criteria of the ef-
ficacy phase.  During the efficacy phase no other form of
contraception except monthly injections of TU at doses
of 500 mg were allowed and subjects underwent general
physical and andrological examination, provided semen
and fasting blood samples at 3 monthly intervals before
each TU injection for reproductive hormones and bio-
chemistry assays.  During the recovery period, subjects
were also asked to attend the clinic for physical exami-
nations and to provide semen and fasting blood samples
at 3 monthly intervals for 12 months.  Couples were ad-
vised to use a reliable contraceptive method if they wanted
to avoid pregnancy.

Written informed consent was obtained from the par-
ticipants and their partners at entry into the trial.  The
study and consent form were approved by the Ethics
Committee and Institutional Review Board of each par-
ticipating center as well as the Scientific and Ethical Review
Group of the WHO Human Reproduction Programme.

2.2  Subjects received assay of genetic polymorphisms
The assay for genetic polymorphisms was a nested

case-control study.  A total of 63 subjects, including 29
partial and 34 complete suppressors who matched par-
tial suppressors in clinical features, provided blood
samples for polymorphic assay of AR and FSHR genes
after informed consent and were allocated to the test and
the control group, respectively.

2.3  Measurements
Semen analyses were performed according to the

WHO laboratory manual [12].  Azoospermia was defined
as absence of sperm from seminal fluid smear after cen-
trifugation at 3 000 × g for 15 min.  Severe oligozoosper-
mia was defined as sperm concentrations of 1 × 106/mL
or less.  Testis volume was estimated using Prader’s
orchidometer with measurements combined to calculate
the total testis volume.  Serum samples were measured
together in batches in the central laboratory of the Beijing
Coordinating Center.  Serum T, luteinizing hormon (LH)
and follicle stimulating hormone (FSH) were assayed using
commercial kits supplied by Immunometrics (London, UK)
[5].  The assay sensitivities were 0.35 nmol/L, 0.1 IU/L and
0.2 IU/L for T, LH and FSH, respectively.  The mean
intra-assay coefficients of variation for serum T, LH and
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FSH were 7.1%, 3.4% and 3.2%, respectively.  The mean
inter-assay coefficient of variation for serum T, LH and
FSH were 15.4%, 7.5% and 7.8%, respectively.

2.4  DNA isolation and polymorphic analysis
Genomic DNA was isolated from peripheral blood

samples using kits according to the manufacturer’s
instructions.  The number of CAG triplet repeats in AR
and the single nucleotide polymorphism (SNP) in FSHR
genes were determined by polymerase chain reaction
(PCR) and using a DNA sequencing technique following
previous research [13–16].

2.5  Statistics
Statistical analyses were performed using SPSS soft-

ware package for windows (version 13.0; SPSS, Chicago,
IL, USA).  All parameters in the present study were tested
for normal distribution.  Sperm concentration, serum LH
and FSH data that were not normally distributed were
logarithm-transformed before analysis.  Logistic regres-
sion modeling with backward stepwise (likelihood ratio)
criterion was used to assess the variables affecting the
suppression of spermatogenesis.  Independent samples
t-test and one-way analysis of variance (ANOVA) were
used to compare differences after logarithm transforma-
tion.  The χ2-test was used to compare frequencies.  De-
scriptive statistics were given as either mean ± SEM/SD
or median together with minimum and maximum.  All
hypothesis tests were two-tailed.  P < 0.05 was considered
significant.

3    Results

3.1 Analyses of clinical parameters, sperm density and
hormone values

Baseline serum LH was significantly higher among
partial suppressors, whereas there was no significant
difference at the baseline of age, body mass index (BMI),
total testis volume, sperm density, serum T and FSH levels
between partial and complete suppressors.  During the
suppression phase, serum LH and FSH levels were sig-
nificantly less suppressed in partial compared with com-
plete suppressors (Table 1).

Logistic regression analysis showed that larger tes-
tis volume (P = 0.002, Expβ = 0.82), higher serum FSH
concentrations either at the baseline (P = 0.032, Expβ = 0.47)
or at the suppression phase (P = 0.002, Expβ = 0.000)
alone, or interaction of serum LH concentrations at the
baseline by BMI (P = 0.022, Expβ = 0.99), serum T
concentrations at the baseline by sperm concentrations
at the baseline (P = 0.014, Expβ = 0.99), and serum
FSH concentrations at the baseline by serum FSH con-
centrations at the suppression phase (P = 0.019,
Expβ = 1.15) were associated with greater risk of par-
tial suppression of spermatogenesis.

3.2  The number of CAG triplet repeats within exon 1 in
androgen receptor gene

The distribution of CAG triplet repeat lengths was
virtually identical in partial and complete suppressors
(Figure 1), with no significant difference in the mean

Table 1. Clinical characteristics before testosterone undeconate (TU) treatment and concentrations of serum reproductive hormones
between complete and partial suppressors. Data are expressed as mean ± SEM.  BMI, body mass index; FSH, follicle stimulating hormone;
LH, luteinizing hormone; T, testosterone.

Parameters Complete suppressors Partial suppressors P-value
         (n = 855)         (n = 43)

Age (years) 32.9 ± 0.1 33.1 ± 0.6 0.808
BMI 22.7 ± 0.1 22.1 ± 0.3 0.105
Total testis volume (mL) 35.5 ± 0.2 34.2 ± 0.9 0.167
Sperm density (106/mL) 59.4 ± 1.0 53.7 ± 3.5 0.202
T (nmol/L) at baseline 17.6 ± 0.2 18.4 ± 0.8 0.407
T (nmol/L) at suppression phase 23.9 ± 0.3 23.7 ± 1.4 0.925
LH (IU/L) at baseline 3.75 ± 0.10 4.53 ± 0.40 0.005
LH (IU/L) at suppression phase 0.20 ± 0.01 0.49 ± 0.10 0.004
FSH (IU/L) at baseline 5.33 ± 0.10 5.14 ± 0.40 0.442
FSH (IU/L) at suppression phase 0.29 ± 0.03 0.67 ± 0.10 0.004
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sition –29, amino acid position 307 and 680 in both the
test group and the control group is summarized in Table 2.
There was no significant difference in the frequency of
distribution among the genotype (P > 0.05, χ2-test).  The
serum FSH concentrations at the baseline among FSHR
genotypes are shown in Table 3.  No significant difference
in serum FSH concentrations at the baseline among the
FSHR genotypes either in the test group or the control
group was noted (P > 0.05, ANOVA).

3.4  FSHR haplotypes
The overall frequency of four FSHR haplotypes in

the two groups is listed in Table 4.  No significant dif-
ference in frequency of distribution between the two

Figure 1. Distribution of androgen receptor gene exon 1 CAG
genotype between the test (n = 29) and the control group (n = 34).

Table 4.  Allelic frequency of the four follicle stimulating hormone
receptor (FSHR) haplotypes in the test group and control group.
aIndicating the number of single strand DNA.  A, Adenine; G,
Guanine; Thr, Threonine; Ala, Alanine; Asn, Asparagine; Ser, Serine.

Allele   Test group  Control group

(–29/307/680)     (n = 29)      (n = 34)
    %  na     %  na

A-Thr-Asn 27.6 16 32.4 22
A-Ala-Ser 6.9 4 8.8 6
G-Thr-Asn 25.9 15 30.9 21
G-Ala-Ser 12.1 7 10.3 7
Undecided 27.6 16 17.6 12
Total 100.0 58 100.0 68

Table 2. Distribution of follicle stimulating hormone receptor (FSHR) genotype at nucleotide position –29, amino acid position 307 and 680
in the test group and the control group.  A, Adenine; G, Guanine; Thr, Threonine; Ala, Alanine; Asn, Asparagine; Ser, Serine.

Group
         Position –29             Position 307                  Position 680
AA AG GG Thr/Thr Thr/Ala Ala/Ala Asn/Ser Ser/Ser Asn/Asn
(%) (%) (%)     (%)    (%)     (%)     (%)    (%)     (%)

Test (n = 29) 20.7 55.2 24.1    48.3    37.9    13.8    48.3   37.9    13.8
Control (n = 34) 32.4 38.2 29.4    50.0    44.1      5.9    52.9   38.2      8.8

Table 3. Serum follicle stimulating hormone (FSH) levels (IU/L) at the baseline among FSH receptor (FSHR) genotypes in the test group and
the control group.  Data are expressed as mean ± SD.  A, Adenine; G, Guanine; Thr, Threonine; Ala, Alanine; Asn, Asparagine; Ser, Serine.

Group
           Position –29               Position 307             Position 680
     AA      AG     GG  Thr/Thr Thr/Ala    Ala/Ala Asn/Asn Asn/Ser  Ser/Ser
   (IU/L)    (IU/L)   (IU/L)   (IU/L)  (IU/L)    (IU/L)  (IU/L)  (IU/L)  (IU/L)

Test (n = 29) 6.0 ± 1.6 5.7 ± 2.4 5.7 ± 1.8 5.3 ± 1.2 6.6 ± 3.1   5.5 ± 0.6 5.3 ± 1.2 6.6 ± 3.1 5.5 ± 0.6
Control (n = 34) 5.2 ± 2.4 7.5 ± 4.4 5.2 ± 3.1 6.4 ± 3.8 5.1 ± 2.9 10.3 ± 4.4 6.2 ± 3.8 5.2 ± 3.0 8.9 ± 3.9

repeat length between the test group (23.6 ± 3.6, range:
18–32) and the control group (23.0 ± 2.4, range: 19–
32).  However, subjects with CAG triplet repeats number-
ing more than 22 had a chance of achieving azoospermia 1.
5 times higher than that in cases with incomplete FSH
suppression (FSH > 0.2 IU/L).

3.3  Single nucleotide polymorphisms (SNPs) of FSHR
at nucleotide position –29 (FSHR promoter), amino acid
position 307 and 680 (exon 10)

The distribution of FSHR genotype at nucleotide po-
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groups was found (P > 0.05, χ2-test).  These four
haplotypes accounted for 77.8% of the FSHR alleles of
the two groups and combined into the 10 major combi-
nations shown in Tables 5 and 6, in which only nine
groups were presented because two possible allelic com-
binations in group 5 (double heterozygous) could not be
distinguished and considered together.  The distribution
of genotype between the test and the control group was
not significantly different (P > 0.05, χ2-test).  No sig-
nificant difference in the FSH levels at the baseline among
the FSHR genotype either in the test group or in the con-
trol group was found (Tables 5 and 6).  In addition, a
correlation between genotypes and FSH concentrations
at the baseline was not found in the present study either.

4     Discussion

In this study, we used 500 mg TU monthly injections
alone in over 1 000 healthy fertile Chinese men.  Among
these, 43 subjects remained partial suppressors in failing
to achieve either azoospermia or severe oligozoospermia
within a 6-month suppression phase comprising a 4.7%
rate of only partial suppression by cumulative life-table
analysis (data not shown).  This finding is consistent with
that described in the phase II study of the same regimen
[5] and other studies [4].  However, the reason for in-
complete suppression of spermatogenesis within and be-

Table 6. Allele combination, genotype distribution, and serum
follicle stimulating hormone (FSH) levels at the baseline in the
control group (n = 34). Data are expressed as mean ± SD.  aNot
possible to discriminate between the two possible allele
combinations.  A, Adenine; G, Guanine; Thr, Threonine; Ala,
Alanine; Asn, Asparagine; Ser, Serine.

Group Allele combination Frequency       FSH
(–29/307/680)  (%) (n)      (IU/L)

1 A-Thr-Asn/A-Thr-Asn 17.6 6 5.1 ± 2.5
2 A-Thr-Asn/A-Ala-Ser 11.8 4 6.1 ± 2.3
3 A-Ala-Ser/A-Ala-Ser   0 0 0
4 A-Thr-Asn/G-Thr-Asn 17.6 6 9.1 ± 5.0
5a A-Thr-Asn/G-Ala-Ser          11.8 4 4.0 ± 1.8

or
G-Thr-Asn/A-Ala-Ser

6 A-Ala-Ser/G-Ala-Ser   5.9 2 10.3 ± 4.5
7 G-Thr-Asn/G-Thr-Asn 14.7 5 4.9 ± 1.5
8 G-Thr-Asn/G-Ala-Ser 14.7 5 5.5 ± 4.3
9 G-Ala-Ser/G-Ala-Ser   0 0 0

Table 5. Allele combination, genotype distribution, and serum
follicle stimulating hormone (FSH) levels at the baseline in the test
group (n = 29).  Data are expressed as mean ± SD.  aNot possible to
discriminate between the two possible allele combinations. A,
Adenine; G, Guanine; Thr, Threonine; Ala, Alanine; Asn, Asparagine;
Ser, Serine.

Group Allele combination Frequency    FSH
(–29/307/680) (%) (n)   (IU/L)

1 A-Thr-Asn/A-Thr-Asn 17.2 5 5.4 ± 0.8
2 A-Thr-Asn/A-Ala-Ser 3.4 1 9.0
3 A-Ala-Ser/A-Ala-Ser 0 0 0
4 A-Thr-Asn/G-Thr-Asn 17.2 5 4.8 ± 1.5
5a A-Thr-Asn/G-Ala-Ser           27.6 8             6.4 ± 3.4

or
G-Thr-Asn/A-Ala-Ser

6 A-Ala-Ser/G-Ala-Ser 10.3 3 5.5 ± 0.8
7 G-Thr-Asn/G-Thr-Asn 13.8 4 5.6 ± 1.5
8 G-Thr-Asn/G-Ala-Ser 6.9 2 6.0 ± 3.6
9 G-Ala-Ser/G-Ala-Ser 3.4 1 5.6

tween populations is not yet understood.  Incomplete
gonadotrophin suppression due to variations of pharma-
cogenetics is one plausible explanation [17].  In the
present study, higher baseline serum LH and serum LH
and FSH during the suppression phase in partial suppres-
sors were significant predictors of incomplete suppres-
sion of spermatogenesis.  Furthermore, clinical features,
such as total testis volume and BMI either alone or
through interactions with circulating LH or FSH, were
associated with incomplete spermatogenic suppression.

It has been reported that genetic polymorphism has
an influence on pharmacological activity [18].  However,
in the present study, DNA from the test group of partial
suppressors and the control group of complete suppres-
sors was analyzed to determine the polymorphisms of
the CAG triplet repeat in AR gene and three different
SNP in FSHR gene were found not to have any relation-
ship to suppressor status.

Androgens exert their effects through AR, a DNA-
binding transcription factor protein, encoded by a single-
copy gene, and the polymorphic CAG triplet repeat is
contained in exon 1 of AR gene.  This polymorphism has
been reported to influence sperm output most probably
as a result of higher transactivational activity of AR [19],
and a negative correlation has been reported between
number of CAG triplet repeats and sperm concentration
but not testicular size in normal men [20].  However, the
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mean length of CAG triplet repeats in the two groups of
this study was 22, consistent with previous research in
the Chinese male population [21], without any signifi-
cant difference between the test group of partial suppres-
sors and the control group of complete suppressors.  The
present finding is also consistent with another study us-
ing androgen alone [22], indicating that partial suppres-
sion of spermatogenesis is not directly related to poly-
morphism of AR gene in androgen alone studies.
However, another post-hoc analysis of a mixed popula-
tion treated with different regimens of hormonal male
contraception has reported that azoospermia was more
frequent in some treatments according to CAG triplet
repeats [23].  In the present study, however, there was
no significant relationship between the number of CAG
triplet repeats and achievement of azoospermia, possibly
due to lower power.  Odds ratios  (OR) obtained in the
present study demonstrated that subjects with CAG trip-
let repeats numbering more than 22 had a chance of
achieving azoospermia 1.5 times higher than that in cases
with incomplete FSH suppression (> 0.2 IU/L).  This
reveals that the influence of polymorphism in AR gene
on hormonal male contraception might be exerted when
combined with other factors, such as suppression de-
gree of serum gonadotrophins.

The key role for serum FSH in Sertoli cell and sper-
matogonial development has been established in all
species.  In monkeys, serum FSH levels are correlated
with spermatogonial development and inadequate sup-
pression of serum FSH is a potential reason for contra-
ceptive failure [24].  FSH stimulates spermatogenesis
using a specific receptor (FSHR) that is a member of the
G protein-coupled receptor family.  Mutation screening
of the FSHR gene reveals various SNP, both in the core
promoter and in the coding region.  In particular, a com-
mon SNP in the core promoter of human FSHR gene at
nucleotide position –29 has been reported.  In exon 10,
two SNP are also discovered at nucleotide position 919
and 2039 (numbered according to the translation start
codon with ATG as “1”) corresponding to amino acid
positions 307 and 680 of the mature protein.  Polymor-
phism within exon 10 results in two major, almost equally
common allelic variants in the Caucasian population:
Thr307-Asn680 and Ala307-Ser680 [25].  Investigations into
the distribution of these two variants are controversial.
The distribution of allelic variants was not different be-
tween normal and infertile men and women [26, 27],
whereas significant difference was found between pa-

tients and controls [15, 28], suggesting that ethnic and
gender differences could be involved and that the poly-
morphism might affect human reproductive function
indirectly.

In the present study, the SNP at position –29 and in
exon 10 in the two groups was analyzed.  The preva-
lence of polymorphisms in this study was similar to that
reported by others [29].  The haplotypes determined by
the three SNPs of the FSHR gene were analyzed and
restriction fragment length polymorphism analysis has
confirmed complete linkage between the two allelic vari-
ants at positions 307 and 680.  Considering the polymor-
phism in the promoter as well, four most common
haplotypes result from the three SNPs of FSHR gene:
A-29-A919-A2039 (A-Thr-Asn), G-29-A919-A2039 (G-Thr-Asn),
A-29-G919-G2039 (A-Ala-Ser) and G-29-G919-G2039 (G-Ala-
Ser) [14].  These four haplotypes accounted for 77.8%
of FSHR alleles of the two groups, whereas in Cauca-
sian population they account for over 99% [30], indicat-
ing an ethnic difference.  Nevertheless, unlike in other
research in women [31], in the present study, these poly-
morphisms did not determine likelihood of partial or com-
plete suppression of spermatogenesis nor was there any
relationship found between FSHR polymorphisms and
basal FSH levels.

In conclusion, partial or incomplete suppression of
spermatogenesis status induced by 500 mg TU monthly
injections is attributable to both hormonal and clinical
factors, whereas polymorphisms in AR and FSHR genes
seem to have no direct influence.  The relationship be-
tween genetic polymorphism and partial suppression of
spermatogenesis requires more extensive testing with
larger sample sizes.
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