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Effect of icarisid II on diabetic rats with erectile
dysfunction and its potential mechanism via assessment
of AGEs, autophagy, mTOR and the NO–cGMP pathway

Jian Zhang1,2,*, Ai-Min Li1,*, Bao-Xing Liu3,*, Fei Han1, Feng Liu1, Shao-Peng Sun1, Xin Li1, Shu-Jin Cui1,
Shao-Zhong Xian1, Guang-Qi Kong1, Zhong-Cheng Xin2 and Zhi-Li Ji1

Erectile dysfunction (ED) is a major complication of diabetes mellitus. Icariin has been shown to enhance erectile function through its

bioactive form, icarisid II. This study investigates the effects of icarisid II on diabetic rats with ED and its potential mechanism via the

assessment of advanced glycosylation end products (AGEs), autophagy, mTOR and the NO–cGMP pathway. Icarisid II was extracted

from icariin by an enzymatic method. In the control and diabetic ED groups, rats were administered normal saline; in the icarisid II

group, rats were administered icarisid II intragastrically. Erectile function was evaluated by measuring intracavernosal pressure/mean

arterial pressure (ICP/MAP). AGE concentrations, nitric oxide synthase (NOS) activity and cGMP concentration were assessed by

enzyme immunoassay. Cell proliferation was analysed using methyl thiazolyl tetrazolium assay and flow cytometry. Autophagosomes

were observed by transmission electron microscopy, monodansylcadaverine staining and GFP-LC3 localisation. The expression of NOS

isoforms and key proteins in autophagy were examined by western blot. Our results have shown that Icarisid II increased ICP/MAP

values, the smooth muscle cell (SMC) growth curve, S phase and SMC/collagen fibril (SMC/CF) proportions and decreased Beclin 1

(P,0.05). Icarisid II significantly increased the proliferative index and p-p70S6K(Thr389) levels and decreased the numbers of

autophagosomes and the levels of LC3-II (P,0.01). Icarisid II decreased AGE concentrations and increased cGMP concentration, NOS

activity (P,0.05) and cNOS levels (P,0.01) in the diabetic ED group. Therefore, Icarisid II constitutes a promising compound for

diabetic ED and might be involved in the upregulation of SMC proliferation and the NO–cGMP pathway and the downregulation of AGEs,

autophagy and the mTOR pathway.
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INTRODUCTION

Currently, some phosphodiesterase type 5 (PDE5) inhibitors have

been widely used in the treatment of erectile dysfunction (ED).1–3

However, these drugs have many side effects, such as headaches and

visual impairment, which show that it is impending for further

research with highly selective PDE5 inhibitor and for the development

of natural drugs.4 Investigations have suggested that the most meta-

bolically active extract of Epimedium is icariin, which has been shown

to exert inhibitory effects against PDE5.5 In addition to its erotogenic

role, icariin has demonstrated testosterone-mimetic properties.6

Icariin has been shown to increase the intracavernous pressure in rats,

which could be abolished nitric oxide synthase (NOS) and guanylate

cyclase inhibitors.7 Furthermore, icariin has successfully ameliorated

both castration-related and arteriogenic impairment of erectile func-

tion and has reduced penile neuron NOS concentration in a rodent

model.8

However, the effect of icariin in inhibiting PDE5 is much weaker.9

Therefore, chemical modifications of the native structure of icariin

have been extensively conducted to achieve high PDE5 inhibitory

activity and multiple effects in the NO–cGMP pathway.10 In 2008, a

modification of the native icariin compound with two hydroxyethyl

moieties enhanced the inhibition of PDE5 80-fold.9 Icarisid II has also

been successfully isolated and assessed its PDE5 inhibitory effect.11,12

This study investigates the effect of icarisid II on diabetic rats with

ED and its potential mechanism via assessment of advanced glycosyla-

tion end products (AGEs), autophagy, mTOR and the NO–cGMP

pathway.

MATERIALS AND METHODS

Animals and treatment

All experimental protocols were approved by the Institutional Animal

Care and Use Committee at Peking University (Beijing, China). Male
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Wistar rats (Grade A, certificate no. scxk11-00-0006) were obtained

from the Animal Breeding Center at the Peking University Health

Science Center. Thirty rats with normal function with intracavernosal

pressure/mean arterial pressure (ICP/MAP) values greater than 0.6

were chosen and classified as the control group. Sixty diabetic rats

with erectile dysfunction and ICP/MAP values less than 0.45 were

chosen from streptozotocin-induced diabetic male rats and were

randomly divided into the diabetic ED group (n530) and the icar-

isid II group (n530). The rats were administered normal saline in

the control and diabetic ED groups. In the icarisid II group, the rats

were administered 10 mg/kg icarisid II intragastrically every day for 8

weeks. Body weights and glucometer tail-vein blood glucose levels

(Bayer HealthCare, Tarrytown, NY, USA) were measured biweekly.

Corpus cavernosum tissue specimens and blood samples were obtained

from every rat in each group and were stored at 220 uC after 8 weeks.

ICP and MAP measurements

To exclude the impact of individual differences, we evaluated erection

function using ICP/MAP. Before and after the eight-week treatment,

surgery was performed under 2% isoflurane anaesthesia at 37 uC. The

right corpora cavernosa and carotid arteries were isolated and cannu-

lated with 23-G butterfly needles primed with 250 U/ml heparin-saline

solution and were connected to a pressure transducer (Utah Medical

Products, Midvale, UT, USA) for ICP and MAP measurements. The

right cavernous nerve near the major pelvic ganglion was identified for

electric stimulation (20 Hz, 5 V and 60 s).

Masson trichrome staining of cavernous tissue

To exclude the impact of individual differences, we evaluated the

cavernous tissue via smooth muscle cell/collagen fibril (SMC/CF)

staining. The cavernous tissue specimens from each group were fixed

in 2% paraformaldehyde and embedded in paraffin. Sections (3 mm in

thickness) were then stained with a Masson trichrome staining kit

(Sigma-Aldrich, St Louis, MO, USA). The corpus cavernosum

SMCs were red, and CFs were blue.

Glucose, AGEs, NOS activity and cGMP assay

Blood specimens were checked for blood glucose levels using the

Roche Diagnostics Cobas Integra 400 Plus assay system (Roche

Diagnostics, Indianapolis, IN, USA). Corpus cavernosum tissue

specimens from each group were performed for AGEs (Cell

Biolabs, Inc. San Diego, CA, USA), NOS activity and cGMP

(Cayman Chemicals, Ann Arbor, MI, USA) with the corresponding

ELISA kits according to the manufacturer’s instructions.

Cell harvests, cell growth curve assay and cell cycle analysis

The primary SMCs were isolated from every rat of each group and

were cultured in Dulbecco’s modified Eagle’s medium supplemented

with 10% foetal calf serum, 100 U ml21 penicillin and 100 mg ml21

streptomycin (Invitrogen, Carlsbad, CA, USA). These primary rat

SMCs were used in the corresponding experiments.

Cell proliferation capacity was investigated via a cell growth curve

drawn using the MTT method, and the cell cycle was analysed using a

flow cytometer (FACS; Becton Dickinson, Franklin Lakes, NJ, USA).

The optical density (o.d.) values were measured at 570 nm and 630 nm

with a microplate reader (Bio-Rad, Hercules, CA, USA). The growth

curve was constructed according to o.d. values. Cell cycle S phase

(DNA synthesis period) analysis and proliferative index (PI) were

evaluated, with PI5(S1G2M)/(G0G11S1G2M). For each sample,

23105 cells were measured.

Autophagosome observations using transmission electron

microscopy (TEM), monodansylcadaverine (MDC) staining or

GFP-LC3 localisation

The SMCs were post-fixed in osmium tetroxide (OsO4) and embed-

ded in Epon. Sections were then stained with uranyl acetate/lead cit-

rate (Sigma-Aldrich) and viewed with a JEM1230 transmission

electron microscope (JEOL, Tokyo, Japan). The SMCs on cover slips

were stained with MDC (Sigma-Aldrich) and were observed with an

SP5 confocal system (Leica, Solms, German) with excitation and emis-

sion filters with wavelengths of 380 nm and 525 nm, respectively.

The SMCs were transfected with GFP-LC3 plasmid using

LipofectamineTM2000 reagent (Invitrogen) and were observed for

LC3 distribution using the SP5 confocal system. Fifty non-overlapping

SMCs in each specimen were randomly selected for autophagosome

distribution analysis via TEM, MDC and GFP-LC3 assays.

Protein isolation and Western blot analysis

Cell lysates containing 100 mg protein were electrophoresed using

sodium dodecyl sulphate–polyacrylamide gel electrophoresis and

were then transferred to a polyvinylidene fluoride membrane

(Millipore Corp., Bedford, MA, USA). Detection of target proteins

on the membranes was performed with an electrochemiluminescence

kit (Amersham Life Sciences Inc., Arlington Heights, IL, USA) using

primary antibodies for nNOS, iNOS, eNOS, LC3-I/II, Beclin 1,

p70S6K, p-p70S6K(Thr389) and b-actin (1 : 1000, all antibodies were

from Santa Cruz Biotech, Santa Cruz, CA, USA). After the hybridisa-

tion of the secondary antibodies, the resulting images were analysed

using a BioRad GS-670 densitometer (BioRad) and UTHSCSA Image

Tool for Windows (3.0) (University of Texas Medical School at San

Antonio, San Antonion, TX, USA) to determine the integrated density

value of each protein band.

Statistical analysis

All experiments were repeated three times, and the similar results were

obtained. Data were expressed as mean6s.d. and were analysed using

one-way ANOVA in the SPSS13.0 software package (SPSS Inc.,

Chicago, IL, USA). P,0.05 was considered statistically significant.

RESULTS

Effects of icarisid II on ICP/MAP and SMCs/CF measurement

Compared to the diabetic ED group, the values for the ICP/MAP and

SMC/CF measurements were higher in the icarisid II (P,0.05)and

control groups (P,0.01). The values were lower in the icarisid II

group than in the control group (P,0.05) (Figures 1 and 2).

Effects of icarisid II on cell multiplication using cell growth curve

and cycle analysis

Compared to the diabetic ED group, the SMCs grew faster and the o.d.

values were greater in the icarisid II and control groups, especially at

days 5, 6 and 7 (P,0.05) (Figure 3a). Compared to the diabetic ED

group, the percentages of cells in S phase (DNA synthesis period) were

higher in the icarisid II (P,0.05) and control groups (P,0.01), and

the PIs were significantly higher in the icarisid II and control groups

(P,0.01). However, there was no statistical difference between the

icarisid II group and the control group (Figure 3).

Effects of icarisid II on autophagosomes using TEM, MDC and

GFP-LC3 localisation assays

Compared to the diabetic ED group, autophagosome quantities were

significantly lower in the icarisid II and control groups (P,0.01).
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However, autophagosome quantities in the icarisid II group were still

greater than those in the control group (P,0.05) (Figure 4).

Effects of icarisid II on the expression levels of key proteins in the

mTOR pathway

Compared to the diabetic ED group, LC3-II and Beclin 1 expression

levels were significantly lower in the icarisid II group (P,0.01 and

P,0.05, respectively), and they were significantly lower in the control

group (P,0.01). Compared to the diabetic ED group, p-

p70S6K(Thr389) expression levels were significantly higher in the

icarisid II and control groups (P,0.01). However, LC3-II and

Beclin 1 expression levels were still higher in the icarisid II group than

those in the control group (P,0.05 and P,0.01, respectively), and the

p-p70S6K(Thr389) expression level was still lower in the icarisid II

group than that in the control group (P,0.01). However, the p70S6K

expression levels were not significantly different (P.0.05) (Figure 5).

Effects of icarisid II on glucose level, AGE concentrations, NOS

activity and cGMP concentration

Blood glucose levels were lower in the control group than those in the

diabetic ED and icarisid II groups (P,0.01). Concentrations of AGEs

were higher in the diabetic ED group than those in the icarisid II and

control groups (P,0.05 and P,0.01, respectively), and AGE concen-

trations were higher in the icarisid II group than those in the control

group (P,0.05). NOS activity levels and cGMP concentrations were

lower in the diabetic ED group than those in the icarisid II and control

group (P,0.05 and P,0.01, respectively), but they were still lower in

the icarisid II group compared to the control group (P,0.05) (Table 1).

Effects of icarisid II on the expression of NOS isoforms

Compared to the diabetic ED group, nNOS and eNOS expression levels

were higher in the icarisid II and control groups (P,0.01), and iNOS

expression levels were lower in the icarisid II and control groups

(P,0.01). However, the eNOS expression level was still lower in the

icarisid II group compared with the control group (P,0.01) (Figure 6).

DISCUSSION

Icarisid II might enhance the proliferation of SMCs and attenuate

excessive autophagy in diabetic ED rats by regulating the mTOR

signalling pathway

It is well known that SMCs/CFs are significantly reduced in the erectile

tissue of ED patients.13–15 The renin-angiotensin system plays an

important role in causing SMC fibrosis, and angiotensin II type I

receptor blockers and angiotensin-sconverting enzyme inhibitors

can ameliorate SMC fibrosis and extend the life span of SMCs in

animal models.16–19 Tankyrase 1 also has a similar effect.14,15 This

study determined that a decrease in erectile function coincided with

the downregulation of SMC proliferation and SMC/CF proportions in

diabetic ED rats and that icarisid II could ameliorate these effects.

The autophagy phenomenon was first recorded with the obser-

vation of autophagosomes by TEM in 1962, which is considered the

Figure 2 Morphological analysis of the ratio of smooth muscle cells/collagen

fibrils (SMCs/CFs) in the corpus spongiosum from a representative of each group.

(a) Masson’s trichrome staining shows SMCs (red areas) and CFs (blue areas) of

representative rats in each group. (b) The morphometric analysis of the area

fraction (SMCs/CFs) was calculated using Leica QWin Pro V2.6 image analysis

and processing software (Leica DMIRB, Leica, Wetzlar, Germany). Data are pre-

sented as the area fraction means from the 20 visual fields randomly selected

from every specimen in each group. The differences were analysed by ANOVA.
wwP,0.01, wP,0.05 vs. diabetic ED group. mP,0.05 vs. control group.

Figure 1 The ratio of intracavernosal pressure and mean arterial pressure (ICP/

MAP) was investigated to evaluate erectile function in each group. (a) A Biopac

physiograph displays the ICP (red curve) and MAP (black curve) values of rep-

resentative rats in each group. (b) ICP/MAP levels were analysed with

acqKnowledge software (BioPac Systems, Santa Barbara, CA,USA) and

ANOVA. wwP,0.01, wP,0.05 vs. diabetic ED group. mP,0.05 vs. control group.
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diagnostic gold standard of autophagy detection.20 MDC staining,

GFP-LC3 fluorescent localisation and key protein expression levels

by Western blot are normally used for autophagy study.21 LC3 is

located on the membrane surfaces of preautophagic vacuoles and

autophagic vacuoles. LC3-II reflects autophagy activity to some

extent and is a common membrane marker for autophagic

vacuoles.22 This study found that excessive autophagy occurred in

diabetic ED rats and was attenuated by icarisid II, which was con-

firmed by LC3-II expression by western blot and with autophago-

some characterisation via TEM, MDC staining and GFP-LC3

localisation.

The signal transduction molecules in autophagy are complex and the

mTOR pathway is widely studied in autophagy.23 TOR kinase is a

negative control element in autophagy and might play an important

role in the regulation of cell growth.24,25 Beclin 1 is a regulatory

protein in autophagy.26 Beclin 1 is involved in autophagosome

formation and forms a complex with class III PI3K.27,28 Beclin 1

participates in the formation of autophagosomes and plays an

important role in cell growth by regulating autophagy activity;29

studies have shown that autophagy activity is lower in Beclin 1

knockout mice30 and that Beclin 1 is critical for autophagy activ-

ity.31 P70S6K regulates 59-TOP mRNA translation and biosynthesis,

which plays a critical role in the growth of the cytoskeleton through

the phosphorylation of the S6 protein.32,33 This study determined

that Beclin 1 levels were significantly increased in diabetic ED rats

and that icarisid II decreased these levels. This study also found that

the proliferation of SMCs and p-p70S6K(Thr389) levels were sig-

nificantly decreased in diabetic ED rats and that icarisid II treat-

ment resulted in increases in both.

This study found that the decreases in erectile function, SMC pro-

liferation and SMC/CF proportions coincided with autophagy upre-

gulation and mTOR pathway downregulation in diabetic ED rats.

Icarisid II might ameliorate erectile function in diabetic ED rats via

a downregulation in AGE concentrations and an upregulation in

the NO–cGMP pathway

Diabetes mellitus, the third serious chronic disease in humans, may

induce diabetic ED.34 Corpus cavernosum SMC fibrosis and cavern-

ous nerve damage occurs in nearly 70% of diabetic patients.35,36 In

such patients, treatment with existing drugs is almost always ineffec-

tual because drugs such as PDE5 inhibitors require the presence of

intact and undamaged penile nerves and SMCs. Therefore, there is a

great need for a new compound that has the capacity to help regenerate

damaged nerves and SMCs.

We have reported that icariin preserved erectile function in

castrated rats with nNOS preservation.37 Further, icariin stimulated

myocardial cell differentiation by the generation of reactive oxygen

species, which increased p38MAPK levels.38 Chung et al.39 found that

Figure 4 Morphological analysis of autophagy in the smooth muscle cells

(SMCs) from each group. (a) Punctate autophagosomes were observed using

transmission electron microscopy monodansylcadaverine staining and GFP-LC3

transfection localisation methods. (b) The area fractions (autophagosomes/

cytoplasm) were calculated using Leica QWin Pro V2.6 image analysis and pro-

cessing software. Data were presented as the means of the area fractions (autop-

hagosomes/cytoplasm) in the 50 cells randomly selected from every specimen in

each group. The differences were then analysed by ANOVA. wwP,0.01 vs. the

diabetic erectile dysfunction (ED) group. mP,0.05 vs. the control group.

Figure 3 The cell growth curve and cell cycle analysis in the smooth muscle cells

(SMCs) from each group. (a) The cell growth curve was assayed from the optical

density (o.d.) values using the MTT method. (b) The cell cycle was analysed by

flow cytometry. (c) The differences were then analysed by ANOVA. wwP,0.01

and wP,0.05 vs. the diabetic ED group. PI, proliferative index.
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icariin increased MEK/ERK and PI3K/Akt/eNOS path-dependent

protein levels in human umbilical vein endothelial cells. Icariin has

also been shown to enhance eNOS expression and NO production in

human endothelial cells and to decrease caspase-3 expression and

cellular apoptosis in response to hydrogen peroxide.40 Icarisid II has

been reported to be the main bioactive form of icariin in vivo.41 We

innovatively isolated and purified icarisid II and found that icarisid II

increases intracellular cGMP levels through the enhancement of nNOS

expression and NOS activity in rat corpus cavernosum tissue in vitro.42

AGEs form as the result of the nonenzymatic glycosylation of pro-

teins through a process by which a reducing sugar attaches to an amino

group of an amino acid residue and then undergoes rearrangement to

form a ketoamine-linked sugar.43,44 AGEs accumulate in diabetic tis-

sue, and AGE concentrations are increased in the penile cavernosal

smooth muscle tissues and the vascular beds of diabetic ED patients.45

AGEs interfere with ion channels, gap junctions and receptors so

that calcium ion release and blood flow both decrease; as a result,

the SMC relaxation mechanism is impaired.46 Seftel et al.47 reported

that AGEs quenched the production of epoxide and NO in endothe-

liocytes and speculated on a pathophysiologic mechanism for AGE-

mediated ED via the upregulation of iNOS and the downregulation of

eNOS. However, Chen et al.48 reported that AGEs could attenuate the

activity of cNOS (nNOS and eNOS) and could increase iNOS activity

in rat cavernosum tissue, resulting in the impairment of penile erectile

function. Ishibashi reported that vardenafil could block the AGE-

induced upregulation of MCP-1 mRNA levels in HUVECs by suppres-

sing AGE receptor expression levels and subsequent ROS generation

via the elevation of cGMP levels.49

This study found that a decrease in erectile function coincided with

an upregulation in AGE concentrations and a downregulation in the

NO–cGMP pathway in diabetic ED rats and that icarisid II could ameli-

orate these effects. We also observed that icarisid II increased erectile

function, SMC proliferation and SMC/CF proportions and decreased

AGE concentrations in diabetic ED rats. These findings might be related

to the upregulation of the NO–cGMP pathway and the downregulation

of autophagy and the mTOR pathway. Further study is needed.
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