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Is thioredoxin reductase involved in the defense against
DNA fragmentation in varicocele?

Gül Özdemirler Erata1, Canan Küçükgergin1, Gülsan Aktan2, Ates Kadioglu2, Müjdat Uysal1

and Necla Koçak-Toker1

We aimed to investigate the role of thioredoxin reductase (TR) and inducible heat shock protein 70 (iHsp70) and their relationship with

sperm quality in varicocele (VAR) patients. Semen samples were obtained from 16 subfertile men diagnosed as VAR and 10 fertile men

who applied to the Andrology Laboratory of Istanbul Medical Faculty of Istanbul University. The sperm TR and iHsp 70 expression levels

were determined using Western blot analysis. The TR activity of the sperm was assayed spectrophometrically. The sperm quality was

evaluated both by conventional sperm analysis and by a terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling

(TUNEL) technique that assayed DNA-fragmented spermatozoa in semen samples. The percentage of TUNEL-positive spermatozoa in

the VAR group (16.3%65.6%) was higher than that in the fertile group (5.5%61.9%). Significant inverse correlations were detected

between the percentage of TUNEL-positive cells and both the concentration (r520.609; P50.001) and motility (r520.550;

P50.004) of spermatozoa. Both the TR expression and activity were increased significantly in the VAR group (U522.0; P50.001 and

U533.5; P50.012, respectively) as analyzed using the Mann–Whitney U Wilcoxon rank sum W test. Furthermore, significant positive

correlations were found between TR expression and activity (r50.406; P50.040) and between TR expression and the percentage of

TUNEL-positive cells (r50.665; P50.001). Sperm iHsp70 expression did not differ between the VAR and fertile groups. In

conclusion, increased sperm TR expression might be a defense mechanism against apoptosis in the spermatozoa of men with VAR.
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INTRODUCTION

Reproduction is a basic process that living organisms need to produce

progeny and to evolve by transmitting their genes. However, both the

reproductive system and spermatozoa are continuously exposed to

reactive oxygen species (ROS) due to the highly active metabolic pro-

cess occurring during spermatogenesis. Although basal levels of ROS

are required for normal sperm functions, the overproduction of ROS

leads to lipid peroxidation in the spermatozoa membrane, which in

turn can reduce sperm motility and viability and increase sperm DNA

damage resulting in infertility.1–6

Human spermatozoa have evolved several mechanisms to defend

against oxidative stress and minimize the damage caused by ROS.

One mechanism is the thioredoxin system which is composed of thio-

redoxin, thioredoxin reductase (TR) and thioredoxin peroxidase.

Thioredoxins are small proteins (12 kDa) that function in maintaining

the redox state of oxidized proteins via the reversible oxidation of the

cysteine residues in their conserved active site Trp-Cys-Gly-Pro-Cys.7–11

In addition, several thioredoxin proteins, specifically Trx-1, Trx-2,

TXL-1, ERDJ-5, TXL-1/TRP32 and sperm-specific thioredoxins, namely

SPtrx-1, SPtrx-2 and Sptrx-3, have been recently reported.12–17 Because

these proteins are abundant in spermatogenic cells, attention has been

paid to the relationship between infertility and the thioredoxin system.

However, such a relationship has not been clearly reported in the

literature.

In contrast, heat shock protein 70 (Hsp70) plays a protective role

in the cell, enabling the cell to withstand the negative effects of hy-

perthermia and other stress conditions by assisting protein folding,

transportation and complex formation. They are also produced

constitutively under normal conditions.18–20 HspA2, which is a

sperm-specific constitutive Hsp70, has been reported to assist in the

transportation of proteins, the repair of fragmented DNA and the

removal of cytoplasm during sperm maturation.21–23 Therefore,

Hsp70 has been proposed to be involved in the pathogenesis of male

infertility. However, there are few studies investigating the association

of sperm Hsp70 (both stress-inducible and constitutive) with male

factor infertility in the literature.24

It has been suggested that varicocele (VAR) is associated with male

infertility, but the pathophysiology remains unclear.25–28 Several

mechanisms have been proposed to explain the causes by which

VAR impairs male fertility. Changes in testicular blood flow and

venous pressure, Leydig cell dysfunction, oxidative stress and hyper-

thermia are some of the main suggested mechanisms.27,29 In addition,

some studies have reported that increased apoptosis has been asso-

ciated with VAR.25,26,30,31 However, for the initiation of apoptosis,
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several physiological stimuli are required. One of these stimuli is ele-

vated temperature of the testes. Spermatogenesis is well known to be

worsened at elevated testis temperatures, implicating the high sensi-

tivity of spermatogenetic cells to heat stress. Thus, heat stress has been

observed to suppress sperm maturation subsequently decreasing

sperm quality and resulting in infertility.32,33 In light of this informa-

tion, the objective of this study was to investigate the changes in sperm

TR and in the inducible form of Hsp70 (iHsp70) in a group of men

with VAR and the effects of these changes on sperm quality.

MATERIALS AND METHODS

All chemicals were purchased from Sigma-Aldrich (St Louis, MO,

USA)

Subjects, semen collection and quality evaluation

Semen samples were obtained from men who applied to the

Andrology Laboratory of Istanbul Medical Faculty of Istanbul

University after 72 h of sexual abstinence. The experimental procedure

used in this study met the guidelines of the Ethical Committee of

Istanbul University. After liquefaction for 15–30 min at room temper-

ature, the semen samples were analyzed for sperm concentration and

motility using a Neubauer hemocytometer superior (Marienfeld,

Germany). The results were evaluated according to the guidelines of

the WHO (World Health Organization).34 Ten fertile donors were

used as the control group (mean age: 31.864.2 years). In the VAR

group, 16 males diagnosed as being VAR were included (mean age:

35.065.1 years). Four of the patients were classified as grade 1, six as

grade 2 and six as grade 3.

Seminal leukocytes were considered to be normal at concentrations

of f13106 peroxidase-positive leukocytes per ml of semen.

Sperm extraction

After liquefaction, fresh semen was washed in 10 volumes of ice cold

0.15 mol l21 NaCl and 30 mmol l21 imidazole, pH 7.0, and centrifuged

at 5000g for 20 min. The resulting pellet was lysed in ice cold solution

of 30 mmol l21 imidazole pH 7.0, 5 mmol l21 DL-dithiothreitol, 0.1%

Triton X-100 and 10% glycerol. The lysate was cleared by centrifu-

gation at 5000g for 20 min. After removing the insoluble material, the

supernatant was stored at 270 uC until used for the detection of

iHsp70 expression.21

Swim-up

The direct swim-up technique was performed without centrifugation.

The semen portion was layered gently under the Pure-Sperm Wash

solution (Nidacon International AB, Gothenburg, Sweden) and incu-

bated for 1 h at 37 uC in a 5% CO2 incubator (Thermo Electron

Corporation Steri-Cult, San Jose, CA, USA). The swim-up portion

was then fixed in 1% paraformaldehyde and used for the terminal

deoxynucleotidyl transferase-mediated dUTP nick end-labeling

(TUNEL) assay, as described below.

TR activity

The sperm TR activity was determined using the method of Holmgren

and Björnstedt.35 In this method, TR catalyses the redox reaction

between 5,59-dithio-bis-2-nitrobenzoic acid and nicotinamide

adenine dinucleotide phosphate. At the end of this reaction, 5,59-

dithio-bis-2-nitrobenzoic acid is converted to a yellow product,

5-thio-2-nitrobenzoic acid. The decrease in the 5-thio-2-nitrobenzoic

acid formation was monitored kinetically at 412 nm. The results were

calculated using the extinction coefficient of 13 600 mol l21 cm21 for

5-thio-2-nitrobenzoic acid and are expressed as mU per mg of sperm

protein.

TR and iHsp70 determination by Western blot analysis

SDS polyacrylamide gel electrophoresis was performed using Bio

Rad’s mini gel system according to Laemmli’s method.36 The sperm

samples containing 20 mg protein per lane were electrophoresed on a

7.5% gel in Tris-glycine buffer. After electrophoresis, the separated

proteins were transferred onto an Immobilon-PVDF membrane

(Millipore, Merck, MA, USA), at 20 V for 2 h 15 min.37 The proteins

on the membrane were blocked with 3% low-fat dried milk. After

washing in phosphate-buffered saline (PBS) containing 1% Tween

20 three times, the blots were treated with a 1 : 1000 dilution of mono-

clonal primer antibodies that recognize iHsp70 (MAB3846; Chemicon

International, Temecula, CA, USA) and TR (SC-28321, Santa Cruz

Biotechnology Inc., Santa Cruz, CA, USA) and then washed three

times with PBS containing 0.1% Tween 20. The resulting immuno-

complexes were exposed to 1 : 10000 horseradish peroxidase-

conjugated goat antimouse IgG (SAB-100; Stressgen Bioreagents

Corporation, MI, USA) for 30 min. After washing with PBS containing

0.1% Tween 20, the labeled-antigen bands were visualized with an ECL

Western blotting detection reagent (Amersham Pharmacia Biotech.,

Buckinghamshire, UK). The intensity of the bands was semiquantified

densitometrically using the Vilber Lourmat gel documentation system

and Bio–1D V.97 software, an image analysis program (Vilber

Lourmat, Biotechnology Division, Torcy, France). The blots were

stripped and subsequently reprobed with an a-tubulin monoclonal

antibody (CBL270; Chemicon International, Temecula, CA, USA) as

an internal standard. The band intensities were normalized to the

a-tubulin content of individual samples. The value of a fertile donor

which was run in the first lane in each assay as a control, was taken as

100 and compared with the other samples. The results were arbitrarily

expressed as the percentage of the control value (%).

The protein content of the sperm samples was measured using

bicinchoninic acid.38 In this method, the peptide bonds reduce

Cu21 ions from the copper solution to Cu1. The amount of reduced

Cu21 is proportional to the amount of protein present in the solution.

The purple-colored product formed by the chelation of bicinchoninic

acid with the Cu1 ions was spectrophotometrically measured at

562 nm.

TUNEL assay

The DNA damage was identified using the TUNEL assay.39 An in situ

cell death detection kit (ApopTag Plus Fluorescein; Chemicon

International, Temecula, CA, USA) was used to detect DNA fragmen-

ted spermatozoa according to the manufacturer’s recommended pro-

tocol. Briefly, 3–4 h after the swim-up preparation, approximately

23106 sperm were fixed with 1% paraformaldehyde for 10 min at

room temperature. Following the fixation, the sample was permeabi-

lized with ethanol/acetic acid. After washing with PBS and equili-

bration buffer, the TdT-labeled nucleotide mix was added to the slides,

which were incubated at 37 uC for 1 h. After the incubation, the slides

were washed with PBS, and an anti-digoxigenin fluorescent antibody

was applied the samples, followed by incubation for 30 min at room

temperature. After the antibody exposure, the slides were washed four

times with PBS and analyzed under an Olympus fluorescence micro-

scope (Ushio Inc., Tokyo, Japan). As a positive control, one sample

was pre-treated with 0.1 U DNase I (Roche Diagnostics, Manheim,

Germany) for 30 min at room temperature. As a negative control, the

enzyme terminal transferase was omitted from the reaction mixture.
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Evaluations of DNA-damaged spermatozoa were performed by one

investigator using unidentified (blinded) sperm preparations. First,

the number of spermatozoa was counted by light microscope. Then,

the number of damaged spermatozoa with green fluorescence was

expressed as a percentage of the total spermatozoa. At least 200 cells

were counted per field, and seven or eight random fields were used to

determine the percentage.

Statistical analysis

The Statistical Package for the Social Sciences (SPSS Inc, Chicago, IL,

USA) program was used for the statistical analyses. The data are

expressed as the means6s.d. The statistical analyses were performed

using the Mann–Whitney U Wilcoxon rank sum W test. The correla-

tion coefficients were determined by Pearson’s method.

RESULTS

The semen characteristics of the fertile and VAR groups are given in

Table 1.

In our study with a relatively small number of VAR patients, the

percentage of DNA-damaged spermatozoa as assayed by the TUNEL

technique was higher in the VAR group (16.3%65.6%) compared

with that of the fertile group (5.5%61.9%) (Table 1). In addition,

significant inverse correlations were detected between the percentage

of TUNEL-positive cells and both the concentration (r520.609;

P50.001) and motility (r520.550; P50.004) of the spermatozoa.

For the Western blot analysis, the band intensities of TR and Hsp70

were normalized to a-tubulin as an internal standard. The values were

expressed arbitrarily by comparison with one fertile sample (as a

control) that was run in the first lane for each assay performed. A

significant increase was found in the sperm TR expression in the VAR

group compared with the fertile group (Mann–Whitney U522.0;

P50.001) (Table 2 and Figure 1). The sperm TR activity also

increased significantly in the VAR group (Table 2) compared with

the fertile group (Mann–Whitney U533.5; P50.012). Furthermore, a

positive correlation was detected between the TR activity and TR

expression in the spermatozoa (r50.406; P50.040) (Figure 2). In

addition, we found a significant positive correlation between the

percentage of TUNEL-positive cells and the TR expression in sper-

matozoa (r50.665; P50.001) (Figure 3).

In contrast, the iHsp70 expression in the sperm of the VAR patients

did not differ from that in the fertile men (Table 2 and Figure 1).

Examples of TUNEL microphotographs from the fertile and VAR

groups are shown in Figure 4.

DISCUSSION

Oxidative damage is considered to be one of the underlying mecha-

nisms in the pathogenesis of male infertility. In fact, there are many

reports describing reduced motility, abnormal morphology and

decreased capacitation; implicating impaired sperm function due to

oxidative damage.40–44 In our previous studies, we have shown

reduced sperm motility caused by treatment with peroxynitrite, which

is a strong oxidizing and nitrating agent.42,43 Increased oxidative stress

parameters and decreased antioxidant capacity in patients with VAR

have also been reported.27,45–47 It has been suggested that the impact of

oxidative stress on male infertility occurs through a change in the

proliferation rate, induction of apoptosis or necrosis, modulation of

gene expression and/or stimulation or inhibition of some cell signaling

components.5,48–50

To the best of our knowledge, there are no studies investigating the

thioredoxin system in VAR in the literature. Current studies on

sperm-specific thioredoxins show that an association may exist

between infertility and the SPtrxs which have functions related to

spermatogenesis.12–17 In this study, we found that both the expression

and activity of TR were significantly increased in the VAR group

compared with those in fertile men. The TR expression is thought

to be increased as a consequence of a defense against the oxidative

and/or apoptotic damage of spermatozoa and the repair of damaged

proteins due to oxidative stress. In addition, the elevation of TR

expression might have caused the increases in TR activity.

In addition, studies on the association of Hsp70 with infertility are

limited in the literature and the reported results are not consistent.

Related studies have mainly dealt with constitutive Hsp70 (Hsp70-2)

and/or with iHsp70 in experimental animals,33,51–55 as well as with

HspA2, which is a human analogue of Hsp70-2,21–23 mostly in the

Table 1 The semen characteristics and sperm DNA fragmentation (TUNEL) of the fertile controls and VAR patients

Fertile controls (n510) (mean6s.d.) (median) VAR (n516) (mean6s.d.) (median) Statistics

Sperm concentration (3106 ml21) 53.8611.7 (55.5) 19.768.6 (17.0) r520.609b P50.001

Sperm motility (%) (A1B)a 59.963.4 (60.5) 31.767.8 (31.5) r520.550b P50.004

Morphology by WHO (%) 45.469.3 (45.0) 32.9611.0 (33.5) r520.386b P50.052

TUNEL (%) 5.561.9 (5.5) 16.365.6 (16.0) — P50.000; U50c

Abbreviations: TUNEL, terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling; VAR, varicocele.
a A1B: progressive motile sperm.
b Pearson’s method was used for correlation analyses.
c Statistical analyses were performed using the Mann–Whitney U test. P,0.05 compared with the fertile controls (mean6s.d.).

Table 2 The expressions of TR and iHsp70 and the activity of TR in the spermatozoa of the fertile controls and VAR patients

Fertile controls (n510) (mean6s.d.) VAR (n516) (mean6s.d.) Statisticsa

iHsp70 (%) 93.5628.2 95.4651.2 U576.0 P50.856

TR expression (%) 114.3626.2 173.8654.1 U522.0 P50.001

TR activity (mUTR mg21 protein) 184.0655.8 283.16100.4 U533.5 P50.012

Abbreviations: iHsp70, inducible heat shock protein 70; TR, thioredoxin reductase; VAR, varicocele.
a Statistical analyses were performed using the Mann–Whitney U test.

P,0.05 compared with the fertile controls (mean6s.d.).
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G Özdemirler Erata et al

520

Asian Journal of Andrology



testes, spermatids or spermatocyte cultures. However, there are few

studies that explore the importance of Hsp70 in human 24,27,56,57 or

animal spermatozoa.58 Yesilli et al.27 reported that sperm HspA2 acti-

vity was lower in infertile men with VAR than in the control group. In

addition, sperm HspA2 gene expression was reported to be down-

regulated in both oligozoospermic patients56 and VAR patients.57 In

contrast, in our previous study, we demonstrated for the first time that

Hsp70 was increased in both asthenospermic and oligoasthenosper-

mic infertile men compared with fertile men.24 We have assumed that

increased Hsp70 acting as a chaperone prevented protein aggregation

and participated in the refolding of damaged proteins following stress.

In the present study, we found that iHsp70 remained unchanged in the

VAR patients.

The importance of apoptosis or programmed cell death in human

spermatozoa is currently a subject of great interest.39,59–61 The final

stage of programmed cell death is DNA fragmentation. One method to

assay fragmented DNA in spermatozoa is the TUNEL technique.

Conventional semen parameters are not always sufficient to determine

sperm function and male infertility. Therefore, attempts have been

made to link some apoptotic alterations, such as DNA fragmentation,

in the spermatozoa with some conventional semen parameters to

evaluate male infertility.39,59,62 Indeed, there are a number of studies,

including our previous study,24 that have proposed the association

between the presence of DNA-damaged spermatozoa and poor semen

parameters in men.31,48–50,59,61,63 In the present study, we found that

the levels of DNA-damaged spermatozoa were higher in the VAR

group compared with those of the fertile group. Significant inverse

correlations between routine semen parameters (such as sperm

concentration and motility) and the percentage of DNA-damaged

spermatozoa were also observed. This increase in DNA-damaged

spermatozoa confirmed the harmful effects of apoptosis on sperm

quality.

In sperm exposed to stress, protein refolding and transportation are

disrupted, and apoptosis is increased. The occurrence of these events

in protein structures may stimulate increases in TR expression and

activity. In conclusion, in our study, TR might be increased to assist in

the repair of oxidized cell molecules, leading to the regeneration of

essential thiol groups that protect proteins from oxidative stress and/

or apoptosis in VAR. However, the limitations of this study include the

relatively small overall number of subjects and the potential for

unidentified confounding clinical parameters in these patients diag-

nosed with VAR.
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Figure 1 Examples of the expression profiles of TR, iHsp70 and a-tubulin of the

spermatozoa from the fertile (a) and VAR (b) groups. The band intensities on the

Western blots (TR and iHsp70) were normalized to a-tubulin as an internal

standard. The values were expressed arbitrarily by comparison with a fertile

sample (as a control) which was run in the first lane for each assay performed.

iHsp70, inducible heat shock protein 70; TR, thioredoxin reductase; VAR, vari-

cocele.

Figure 2 Positive correlation between TR activity and TR expression. TR, thior-

edoxin reductase.

Figure 3 Positive correlation between the TUNEL results and TR expression. TR,

thioredoxin reductase; TUNEL, terminal deoxynucleotidyl transferase-mediated

dUTP nick end-labeling.

Figure 4 Examples of TUNEL microphotographs from the fertile (a) and VAR (b)

groups. TUNEL, terminal deoxynucleotidyl transferase-mediated dUTP nick end-

labeling; VAR, varicocele.
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