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Proteomics and the genetics of sperm
chromatin condensation

Rafael Oliva1,2 and Judit Castillo1,2

Spermatogenesis involves extremely marked cellular, genetic and chromatin changes resulting in the generation of the highly

specialized sperm cell. Proteomics allows the identification of the proteins that compose the spermatogenic cells and the study of their

function. The recent developments in mass spectrometry (MS) have markedly increased the throughput to identify and to study the

sperm proteins. Catalogs of thousands of testis and spermatozoan proteins in human and different model species are becoming

available, setting up the basis for subsequent research, diagnostic applications and possibly the future development of specific

treatments. The present review intends to summarize the key genetic and chromatin changes at the different stages of spermatogenesis

and in the mature sperm cell and to comment on the presently available proteomic studies.
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INTRODUCTION

Spermatogenesis involves extremely marked cellular, genetic and

chromatin changes resulting in the generation of the highly specialized

sperm cell (Figure 1). Spermatogonial stem cells replicate and differ-

entiate into primary spermatocytes that undergo genetic recombina-

tion to give rise to haploid round spermatids.1–4 Round spermatids

then undergo a differentiation process called spermiogenesis where

marked cellular, epigenetic and chromatin remodeling takes

place.2,5–12 The nucleosomes are disassembled and the histones are

removed and replaced by the high positively charged protamines

forming tight toroidal complexes, organizing 85–95% of the human

sperm DNA (Figure 1). At the cellular level, most of the cytoplasm is

removed, and a large flagella and the acrosomal vesicle are assembled

(Figure 1). Finally, the spermatozoon undergoes a maturation process

through its transit in the epididymis where the chromatin is further

compacted through the formation of disulfide bonds and zinc bridges

among protamines, and the acquirement of different membrane and

cellular functionalities.13–15 Once in the female tract, the spermato-

zoon must be capacitated, a process involving many signaling changes

and the attainment of hyperactivated motility.16–19 Before the sperm

cell penetrates the oocyte, the sperm–oocyte recognition and the acro-

somal reaction must take place.20 Finally, once in the oocyte, the male

pronucleus must undergo another extremely marked chromatin

remodeling process where the nucleoprotamine structure is disas-

sembled and a new nucleosomal and chromatin structure is assembled

(Figure 1). The accessibility of the spermatozoon has facilitated the

study of its composition and mechanisms involved in its function and

makes this cell particularly well suited for proteomic analysis.21 In

addition, dissecting the differentiation process of spermatogenesis

through proteomic analysis provides important potential biomedical

applications in regenerative medicine,22,23 in the identification of the

genetic basis of male infertility,24–28 in understanding the origin of

genetic and epigenetic mutation,5,9,10,26,29–32 in reproductive toxico-

logy33 and in the development of potential contraceptive strate-

gies.34,35 Different studies have investigated the genetic and protein

changes and the mechanisms involved in the different stages of sper-

matogenesis and function of spermatozoa. The present review intends

to complement different recent reviews focusing on the proteomics of

the mature sperm cell,21,36–43 on testicular proteomics44,45 or on the

proteomic changes upon epididymal maturation and capacitation.46

To reach this goal, the structure followed will be to describe the key

genetic and chromatin changes at the different stages of spermatogen-

esis (Figure 1), with indication of the related proteomic studies being

performed based on large-scale mass spectrometry (MS) identification

of proteins.

TESTICULAR PROTEOMICS: SPERMATOGONIAL STEM CELLS,

SPERMATOCYTES AND SPERMATIDS

One of the initial approaches applied to identify proteins present in the

different stages of spermatogenesis exploited the changes in cellular

abundance during testis development. Using this approach, the two-

dimensional (2D) proteome profile changes during mouse testis

development led to the identification using matrix-assisted laser

desorption/ionization-time of flight (MALDI-TOF) of 44 proteins

with substantial changes in protein abundance during development.47

Subsequent application of MALDI-TOF/TOF using a similar

approach allowed identification of 257 different proteins that clus-

tered into six different expression patterns.48 A limitation of the ana-

lysis of the entire testis is the existence of mixed cellular population

including the presence of somatic cells. Therefore, other approaches
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have been used such as the isolation of the different cellular compo-

nents of the testis or the study of cultured germ cells.

One of the testicular cells studied using proteomics is the sperma-

togonial stem cell.49–51 The interest in the study of the spermatogonial

stem cells is multiple. Pathological perturbation of the stem cell is

suspected as the origin of certain types of testicular cancers and male

infertility, so that identification of the mechanisms involved would

facilitate the development of preventive or treatment options.52,53 In

addition, the discovery of pluripotent stem cells within the testis raises

important biomedical applications in regenerative medicine.23

Important issues in stem cell research are the identification of key

genes and proteins needed to maintain the pluripotent state or that

can be used as markers for their identification.49 A very elegant

application of a comparative proteomics approach has been applied

to demonstrate that after comparison of the proteomic profiles of

cultured mouse multipotent adult germ line stem cells with embryonic

stem cells, only 18 proteins were detected as differentially expressed

out of a total of 409 proteins identified using 2D separation of the

proteins followed by MS.22 The interpretation of this result was that

the proteomes of multipotent adult germ line stem cells were highly

similar to those of embryonic stem cells.22

A different approach to characterize the proteome of the sperma-

togonial stem cell exploited the peculiarities of the testis devel-

opmental biology in the dogfish Scyliorhinus canicula.54 These

authors isolated, under stereomicroscope and dissection, the testicular

germinative zone, highly enriched in spermatogonial stem cells, and

used 2D and MALDI-TOF/TOF to identify 16 proteins and to also

demonstrate the feasibility of this model to study the stem cell niche.54

Still, a different set of studies has used testicular cell sorting to obtain

enriched cellular fractions with which proteomic analysis is per-

formed. This approach was applied to separate spermatogonia from

9-day-old rats followed by protein 2D analysis and identification of the

proteins using MALDI-TOF.55 More recently, the same group applied

a similar procedure on immature and mature rat testis combined with

sedimentation at unit gravity or elutriation to obtain highly enriched

fractions of spermatogonia, spermatocytes and early spermatids.56

Subsequently, 2D difference in gel electrophoresis allowed identifica-

tion of the relative abundance of 1274 proteins of which 265 differed

Figure 1 Cellular, genetic and chromatin changes at the different stages of spermatogenesis and sperm cell maturation. At the top of the figure, the different cellular

stages of spermatogenesis are represented along with the genetic activities.2,60 At the bottom of the image, a chromatin model of the mammalian nucleohistone to

nucleoprotamine transition is shown.2,5,11,21
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significantly in the three groups of cell types. MALDI-TOF/TOF was

then used to identify 123 non-redundant proteins clustering into the

clades of mitotic, meiotic and post-meiotic cell types.56 It is also

important to consider the close relationship between the Sertoli cell

and the spermatogenic cells. Recently, the effect of the loss of Dicer in

the Sertoli cell, required for microRNA biogenesis, on the testicular

proteome, has been studied.57

Once the diploid spermatogonium is committed, it divides mitoti-

cally to produce two diploid intermediate cells called primary sper-

matocytes. Each primary spermatocyte then duplicates its DNA and

subsequently undergoes meiosis I to produce two haploid secondary

spermatocytes (Figure 1). Very importantly, this stage involves genetic

recombination of homologous chromosomes to increase the genetic

variability of the gamete. Many of the genetic causes of male infertility

stem from meiotic anomalies. For instance, an important proportion

of cases of male infertility are due to meiotic arrest.25,26,28 Also, many

chromosomal structural anomalies result in incorrect pairing at mei-

osis and in the generation of chromosomally unbalanced gametes

responsible for embryo lethality or severe anomalies in the offspring.58

Well-known causes and risk factors of male infertility such as the

presence of Y-chromosome microdeletions also result in a variety of

phenotypes which may include Sertoli cell-only syndrome, spermato-

genic arrest and hypospermatogenesis resulting in azoospermia or

oligospermia.24,27,59 Thus, proteomics, through the indicated above

strategies, allows the identification of the proteins involved in the

meiotic stage of spermatogenesis with the potential to contribute to

the identification of the involved pathogenic mechanisms associated

to male infertility in these cases.47,48,56

After the completion of the meiosis, the haploid round spermatids

are generated (Figure 1). Haploid round spermatids are still transcrip-

tionally active.60 However, another aspect of the biology of the sper-

matogenesis that deserves consideration is that each cell division from

a spermatogonium to a spermatid is incomplete. The cells remain

connected to one another by bridges of cytoplasm to allow synchron-

ous development. It has been proposed that these cellular bridges

allow the exchange of proteins and gene products so that, even though

the round spermatids are genetically haploid, they may express pro-

teins as if they were diploid.60 The haploid spermatids have been the

focus of different proteomic studies. Fluorescence-activated cell sort-

ing sorting has been applied to isolate haploid mouse spermatids

followed by liquid chromatography-tandem mass spectrometry (LC-

MS/MS) to identify 2116 proteins, 299 of which were testis specific and

155 were novel.61 Interestingly, the analysis of the chromosomal dis-

tribution of the haploid identified genes showed an underrepresenta-

tion of the X chromosome, interpreted as owing to meiotic X-

chromosome inactivation, and overrepresentation of chromosome

11 upon expansion of the gene families.61

In a different approach, the proteomic analysis in testis biopsies of

testosterone-treated men allowed the identification of proteins poten-

tially related to the induced testis regression.62 As an experimental

model, the effect of hyperthermia on mouse spermatogenesis has also

been studied.63 The same group also investigated the whole human

testis, identifying 462 unique proteins.64,65 Evidence for protein het-

erogeneity was concluded upon the identification of 180 different

proteins in more than one protein spot. Also, phosphoprotein staining

allowed identification of 52 phosphorylated proteins.65 Proteins

related to altered fertility in fish have also been identified using a

whole-testis proteomic approach.66

The proteomic studies during spermiogenesis are highly relevant in

the identification of all the proteins involved and the mechanisms of

the nucleohistone-to-nucleoprotamine transition, which probably

represents the most marked chromatin change that cells may undergo

(Figure 1). One of the initial chromatin changes in the nucleohistone-

to-nucleoprotamine transition is the incorporation of histone var-

iants.67–72 Another important early event is histone hyperacetylation

that occurs during spermiogenesis just before the nucleosome dis-

assembly.73–78 It was postulated that histone hyperacetylation and

rapid turnover of acetyl groups could rapidly and reversibly expose

binding sites in chromatin for subsequent binding of chromosomal

proteins.74 More recently, it was also shown in vitro that histone

hyperacetylation facilitated nucleosome disassembly and histone dis-

placement by protamines.79,80 Also, hyperacetylated nucleosomes were

shown to appear in a more relaxed structure upon binding to electron

microscopy grids.80,81 It has been shown that the testis-specific bromo-

domain-containing protein binds to hyperacetylated histone-4, trigger-

ing a reorganization of the chromatin.3,10,82,83 Impaired histone-4

hyperacetylation has been detected in infertile patients.84,85

Once the nucleosomes are disassembled, transition proteins are

incorporated.2,86 Transition proteins are then finally replaced by pro-

tamines to form a highly compact nucleoprotamine complex

(Figure 1).2,3,6,7,10,86–90 It is known that protamines are phosphory-

lated before binding to DNA and that a substantial dephosphorylation

takes place concomitant to nucleoprotamine maturation.2,91–93 The

dynamics of binding of the protamines to DNA has also been

studied.94–96 After binding to DNA, the formation of interdisulfide

bonds between protamines further stabilizes the nucleoprotamine

complex.15,97 Different models for the structure of nucleoprotamine

have been proposed.98–104 These chromatin changes during spermio-

genesis take place in the context of a marked metamorphosis of the

sperm cell and shaping of the head and associated structures such as

the perinuclear theca and manchette.8,105 However, despite substantial

amount of information available, the identification of the molecular

mechanisms governing the nucleohistone-to-nucleoprotamine trans-

ition and all the sperm cell changes still requires substantial effort. The

available catalogs that are becoming available as derived from the

proteomic projects represent a very important first step in the com-

plete identification of the proteins and mechanisms involved.

EPIDIDYMAL MATURATION

Testicular spermatozoa are haploid, have completed the nucleohis-

tone-to-nucleoprotamine transition and have acquired most pheno-

typic features but they are not yet functional (Figure 1). Motility and

the ability to bind to the oocyte are lacking and the sperm chromatin

still needs to further complete maturation through the formation of

disulfide bonds and zinc bridges in the nucleoprotamine (Figure 1).

All these functionalities are acquired during the transit of the sperm

cell through the epididymis.13–15,106,107 Proteomics has also been

applied to the study of the sperm cell during epididymal maturation.

2D difference in gel electrophoresis has been used to isolate and to

identify 60 protein spots, significantly modified as sperm traverse the

epididymis.46 In one of the proteins, the change was found to represent

a serine phosphorylation.46 The proteomic changes in mammalian

spermatozoa during epididymal maturation have also been the subject

of review.13

Epididymal secretions may also determine many aspects of the

physiology of the spermatozoa. There is evidence that some of the

proteins present in the fully mature ejaculated sperm cell may have

been acquired during the epididymal transit.108 Therefore, several

proteomic initiatives have also focused their efforts on the identifica-

tion of the proteins present in the fluid secretions, which surround the
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sperm cell during its passage through the male genital tract. The

human and stallion epididymal secretome and the human seminal

plasma proteome have been reported.109–113 Also, the proteomic com-

ponent of epididymosomes and accessory gland fluid has been char-

acterized in several species.108,114–123

PROTEOMICS OF MATURE SPERMATOZOA AND THE SPERM

CELL GENOME, EPIGENOME AND PROTEOME DELIVERED TO

THE OOCYTE

The most extensive report on the identification of mature human

sperm proteins used LC-MS/MS to identify 1056 gene products.124

This catalog is complementary to additional catalogs obtained using

the 2D approaches.21,125–127 In other mammals, spermatogenic pro-

teomic profiles are also available.21,128–131 In invertebrates, MS iden-

tification of sperm proteins has been applied to the fruit fly.36,132,133

and the worm Caenorhabditis elegans134 among several others.21 One

of the aspects amenable to study by proteomic analysis is the iden-

tification of the evolution and intensified selection of some sperm

proteins.131,135–137

Knowledge of the sperm cell proteome is also relevant to understand

the different functions of the sperm cell. It is well known that the most

essential function of the sperm cell is to deliver an intact paternal

genomic DNA sequence to the oocyte, and that alterations in DNA

integrity are a cause of male infertility, failed assisted reproduction and

pregnancy loss.127,138–140 More recently, it has been recognized that, in

addition to the DNA sequence, the existence of imprints determined

by the DNA methylation status is also important for a proper embry-

onic development, and that infertile patients have an aberrant DNA

methylation at specific loci.29–32 The analysis of the proteins identified

in the different mature sperm proteomic projects has more recently

identified proteins that may have a role in fertilization. For example,

transcription factors, DNA-binding proteins and proteins involved in

chromatin metabolism have been identified in cells that are transcrip-

tionally inactive and that have most of its DNA tightly packaged with

protamine.5,21,124 It will be interesting to determine whether these

nuclear proteins are marking some regions of the male genome and

may have an epigenetic function.5 An alternative explanation for the

presence of some of these proteins is that they could represent leftovers

from spermiogenesis, although in this case, the identification of these

proteins could be useful as they could represent a ‘window’ to the later

stages of spermatogenesis with potential clinical implications. Recent

reports indicate the presence of a complex chromatin organization of

the genes in sperm, with an appreciable fraction containing both

nucleohistone and nucleoprotamine domains that is suggested to be

of potential relevance for embryo development.141–143 In addition to

the sperm chromatin proteins, it will also be interesting to consider the

possibility of additional sperm proteins having a potential role in

fertilization.21,37,144

PROTEOMIC ALTERATIONS OF EJACULATED SPERM CELLS IN

INFERTILE PATIENTS

The presence of proteomic anomalies in infertile patients has been

assessed by comparing the proteome of abnormal sperm samples from

infertile patients with the proteome of control normozoospermic sam-

ples from fertile donors. One of the initial reports that demonstrated

the potential of 2D proteomics in the study of sperm defects reported

the proteomic mapping of a patient who experienced a failure in in

vitro fertilization, where 20 different proteins were identified as com-

pared with controls.145 Subsequently, different protein differences

associated with asthenozoospermia have also been identified.146–148

Following a similar approach, the abundance of the proteins present in

the sperm cells from 47 sperm samples from infertile patients and from

10 semen donors were analyzed in our laboratory by 2D polyacryla-

mide gel electrophoresis.127 In each of the 2D maps, the intensity of

101 spots previously identified by MALDI-MS analysis was measured.

In addition, other parameters related to male infertility such as the

protamine content and DNA integrity were also determined in each

independent sample. Several interesting proteins such as transcription

factors, prohibitin, heat shock and proteasome proteins were iden-

tified and linked to altered DNA integrity and abnormal protamina-

tion.127 Proteomics has also been applied to the analysis of round-

headed spermatozoa by 2D fluorescence difference in gel electrophor-

esis, resulting in the identification of 35 protein spots (out of 61

identified) exhibiting significant changes in expression (9 proteins

upregulated and 26 proteins downregulated) between normal and

round-headed spermatozoa.149 It will be interesting to extend the

analysis of patients through differential proteomics to incorporate

the use of more robust methods based on non-isotopic labeling of

the proteins and LC-MS/MS identification of the proteins.19

CAPACITATION

Capacitation is the activation process that leads to hyperactivated

motility facilitating the sperm–oocyte interaction, binding and pre-

paration for the acrosome reaction to penetrate the zona pellucida.16–

18,20,150 The fact that most of the male genome is heavily condensed by

protamines and transcription is completely blocked in the nucleopro-

tamine domains, together with the loss of most of the sperm cyto-

plasm, has classically favored the hypothesis that any protein changes

concomitant to sperm capacitation had to be because of post-trans-

lational modification (Figure 1). However, some evidence suggests

that the mature sperm cell is capable of translation of nuclear

mRNA by mitochondrial-type ribosomes.151 Further support for this

hypothesis of translation by mitochondrial-type ribosomes during

sperm capacitation has been provided using a proteomic approach.17

In this study, differential proteomics was applied to identify 44 pro-

teins with lower expression in D-chloramphenicol (a specific inhibitor

of mitochondrial translation)-treated sperm cells in comparison with

capacitated sperm. In addition, evidence was provided that 26 of 44 of

these proteins were involved in critical processes for the sperm–egg

interaction.17

However, in addition to the potential of de novo protein syntheses,

the most widely accepted hypothesis is that most of the protein

changes concomitant to capacitation are likely to be because of the

post-translational modification of existing proteins. One of the most

common post-translational modifications is phosphorylation. This

modification was studied in capacitated human sperm resulting in

the mapping of 60 sites of phosphorylation.152 The protein profiles

of capacitated versus ejaculated human sperm have also been studied

after 2D separation of the proteins.18 This study resulted in the iden-

tification of the 25 most abundant spots in ejaculated sperm, the

23 most abundant spots in capacitated sperm and the identification

of proteins with substantial variation between uncapacitated and

capacitated sperm.18 The role of the nitric oxide as an inducer of

capacitation has also been studied to identify 240 S-nitrosylated

human sperm proteins.153 A focused approach applied to the deter-

gent-resistant membranes in capacitated sperm allowed the identifica-

tion of 100 proteins, many of which were implicated in sperm–oocyte

interaction.154

Isotopic labeling has also been applied to analyze the capacitation-

associated changes in 42 different phosphopeptides.155 A radically
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different and robust approach has been recently applied to identify the

proteomic changes associated with sperm capacitation through the

combined use of immobilized pH gradient-strip prefractionation fol-

lowed by LC-MS/MS analysis.19 Using this approach, label-free quant-

itative analysis of proteomic changes associated with capacitation

identified 71 peptides corresponding to 52 proteins changing during

capacitation many of which had not been previously implicated in this

process.150

CONCLUSION

Proteomics applied to sperm cell research has so far led to the genera-

tion of catalogs of thousands of proteins present in the testis and in the

mature sperm cell. This information is already being applied to the

identification of the molecular mechanisms involved in spermatogo-

nial stem cell physiology, meiotic recombination and in chromatin

condensation, function and evolution of the sperm cell. Proteomics is

also applied to identify the post-translational protein modifications

occurring during epididymal maturation and capacitation, and to

identify the complete proteomic complement of the sperm cell chro-

matin delivered to the oocyte. Furthermore, it is also being applied to

the identification of the proteins involved in male fertility and infer-

tility leading to the identification potential infertility markers and

additional biomedical applications. However, there are still different

issues and challenges that must be considered. Methodologically, it

will be necessary for laboratories to keep up with the constant

improvement in throughput of the MS equipment. The potential

development of efficient spermatogenic in vitro culture systems, allow-

ing synchronous differentiation of relatively pure cellular stages,

would be a major accomplishment to potentiate the proteomic study

of the sperm cell differentiation mechanisms. The alternative of sepa-

rating and sorting testicular cells for proteomic analysis must take into

account the cellular purity of the resulting cellular fractions. Even

considering only the mature sperm cell, apparently a single cell type,

it turns out to be a complex heterogeneous mixture of different quality

sperm cells with substantial biochemical, functional and morpho-

logical differences. This fact together with the variation present in

independent individuals and the physiological changes that the sper-

matozoa undergo upon ejaculation generates an enormous potential

for variation, which must be taken into account in proteomic studies.

Ultimately, the proteomic information will be very valuable in the

context of the genetic, genomic, transcriptomic and metabolomic

information. Altogether, we are now at an exciting and challenging

momentum in proteomic sperm cell research with lots of work still to

be done.
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