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The mechanism of sperm–egg interaction and the
involvement of IZUMO1 in fusion
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An average human ejaculate contains over 100 million sperm, but only a few succeed in accomplishing the journey to an egg by

migration through the female reproductive tract. Among these few sperm, only one participates in fertilization. There might be an

ingenious molecular mechanism to ensure that the very best sperm fertilize an egg. However, recent gene disruption experiments in

mice have revealed that many factors previously described as important for fertilization are largely dispensable. One could argue that

the fertilization mechanism is made robust against gene disruptions. However, this is not likely, as there are already six different

gene-disrupted mouse lines (Calmegin, Adam1a, Adam2, Adam3, Ace and Pgap1), all of which result in male sterility. The sperm from

these animals are known to have defective zona-binding ability and at the same time lose oviduct-migrating ability. Concerning sperm–

zona binding, the widely accepted involvement of sugar moiety on zona pellucida 3 (ZP3) is indicated to be dispensable by gene

disruption experiments. Thus, the landscape of the mechanism of fertilization is revolving considerably. In the sperm–egg fusion

process, CD9 on egg and IZUMO1 on sperm have emerged as essential factors. This review focuses on the mechanism of fertilization

elucidated by gene-manipulated animals.
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INTRODUCTION

Fertilization is the phenomenon in which sperm and egg find each

other, interact and fuse. This phenomenon is essential for all plants

and animals which engage in sexual reproduction. Many experiments

have been performed, and papers published, using a vast number of

phyla. Despite the biological importance of fertilization, the molecular

mechanism of fertilization remains unknown. For example, in mam-

mals, almost all the proteins reported to be important in sperm–egg

interaction and fusion turned out to be not essentially required in

fertilization under the light of gene disruption experiments1–5

(Figure 1). The gene knockout experiments have negated the old

scheme of fertilization mechanism, but at the same time, this tech-

nique has serendipitously made us aware of the existence of essential

genes.

A tetraspanin family CD9 which is expressed ubiquitously in the

body was disrupted to find the effect on immune systems. The dis-

ruption was performed in three different laboratories at the same time

and all three laboratories found that both the Cd9-disrupted male and

the female mice were healthy. However, surprisingly, the Cd9-null

females were sterile. Somehow, the ubiquitously-expressed CD9 was

not essential in almost all the body parts, but was essential for egg to

fuse with sperm.6–8 The role of CD9 in fertilization might not have

been found for many years if the gene disruption technique not been

applied.

This review focuses on the studies on fertilization using gene-

manipulated animals and describes the history of various candidates

before and after the gene disruption experiments. Due to limitations

on length, it was not possible to mention all the factors examined by

gene-disrupted mouse lines. In this review, we aimed to provide a brief

outline of the disappearance of the old scheme and an introduction to

the totally new scheme which is emerging.

CANDIDATE PROTEINS FOR SPERM–EGG INTERACTION

Sperm–zona binding

There have been many papers indicating the involvement of acrosin on

sperm-penetrating zona pellucida (ZP). Surprisingly, however, when

Acrosin-knockout mice were produced, the sperm from the mutant

mice fertilized eggs without difficulty.1 This was just a prelude; all the

so-called ‘important’ factors (b-1,4-galactosyltransferase, milk fat

globule epidermal growth factor 8, zonadhesin, sperm adhesion mole-

cule 1, etc.) have been demonstrated not to be essential in gene-

disruption experiments.9–11

Sperm–egg fusion

Fertilin. Until now, many monoclonal antibodies against sperm anti-

gens were produced to elucidate the molecular mechanism of fertiliza-

tion.12 Among those, PH-30 was reported to inhibit sperm–egg fusion

in in vitro fertilization in guinea pig. The antigen recognized by PH-30

was identified as fertilin that is composed of two glycosylated trans-

membrane subunits, fertilin-a (ADAM1B) and fertilin-b (ADAM2).

ADAM1B and ADAM2 make a heterodimer by non-covalent bind-

ing.13 ADAM1B is conserved among broad species, albeit it is a pseu-

dogene in human. ADAM is named after a disintegrin and

metalloproteinase and forms family proteins consisting of multiple
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domains: the prodomain, metalloprotease, disintegrin, cysteine-rich,

epidermal growth factor-like, transmembrane and cytoplasmic tail

domains. ADAM family proteins are fascinating proteins with import-

ant roles in cell adhesion, migration, proteolysis and signaling.14

ADAM family proteins in human were reported up to number

ADAM39 and are still expanding. In sperm from mouse testis, fertilin

(ADAM1B/ADAM2) is distributed on the plasma membrane over the

entire sperm head but is found only on the posterior head once sperm

have passed through the epididymis. Moreover, during the transit

from the testis to the epididymis, ADAM1B and ADAM2 are both

proteolytically cleaved between the metalloprotease and disintegrin

domains. Thus, in mature fertilization-competent sperm, the N-

terminal of each fertilin subunit is the disintegrin domain.15 Mouse

ADAM2 has a peptide sequence similar to integrin-binding Arg–Gly–

Asp domain. It was reported that when the recombinant protein of

disintegrin domain added in in vitro fertilization assay, sperm–egg

adhesion and fusion were inhibited.16 Since the extracellular domain

of ADAM1B contains a hydrophobic region that resembles the fuso-

genic region of viral fusion proteins, it was assumed that fertilin binds

to an integrin (aVb3 or a6b1 in mouse eggs) and thereby helps the

sperm adhere to the surface of egg, which is a prerequisite for, and

leads to, membrane fusion.17 One of the ADAM proteins, meltrin-a

(ADAM12), is reported to be involved in the formation of multinu-

cleated myotubes.18 These circumstantial data convinced many

researchers to consider the fertilin as a genuine fusogenic factor in

gamete fusion. If this is the case, the sperm without fertilin must fail

to fuse with eggs. When fertilin was removed from sperm by eliminat-

ing one of the heterodimer genes Adam2, the male mice became infer-

tile as expected, except that the disabled sperm function was largely a

zona-binding ability rather than a fusing ability.19 Moreover, the

removal of fertilin by disrupting Adam1b gene, the sperm can fertilize

eggs without fertilin.20 Why do these two different fertilin knockout

mouse lines show a completely a different outcome? It is now under-

stood that when the Adam2 gene was deleted, a testicular type of

fertilin (ADAM1A/ADAM2) was disrupted together with fertilin

(ADAM1B/ADAM2). Therefore, the apparent phenotype of ADAM2

was not directly derived from the disappearance of fertilin from sperm,

but from the impaired formation of testicular type fertilin.19,20

Thus, the surprising outcome of gene disruption experiments is that

fertilin is not essential for sperm-fertilizing ability despite considerable

circumstantial evidence indicating that fertilin is the fusion protein.

Cyritestin (ADAM3). ADAM3 is a 110-kDa protein in testis but is

found to be a 42-kDa protein in epididymis similar to the case of

ADAM1B and ADAM2.21 An eight-residue peptide from the

ADAM3 disintegrin loop sequence inhibits sperm–egg adhesion and

fusion (80 and 90% of inhibition in adhesion and fusion, respectively).

Therefore, ADAM3 was thought to be implicated in sperm–egg bind-

ing and fusion 22. Adam32/2 sperm are drastically deficient in adhe-

sion to the egg ZP (0.3% of wild-type) and to the egg plasma

membrane (9% of wild-type) in in vitro fertilization assays.

However, the gene disruption experiments indicated that ADAM3 is

not essential for fusion (fertilization index remained the same as in the

wild-type).23,24

CD46. Human CD46 is a ubiquitously-expressed protein known to

protect cells from complement attack. Anderson et al. provide evid-

ence that regulated generation of complement C3 fragments by acro-

somal enzymes and the binding of these fragments by CD46 on sperm

and complement receptor 1 on eggs may be an initial step in gamete

interaction, leading to membrane fusion.25 In fact, several anti-human

CD46 monoclonal antibodies effectively inhibit fertilization in in vitro

fertilization.26 Interestingly, mouse CD46 was found only in testis and

the protein was found on the inner acrosomal membrane of sperm.27

The fact that CD46 is expressed only in testis in various mammalian

species indicates the importance of CD46 in reproduction and encour-

aged us to make a Cd46-disrupted mouse line. Therefore, we produced

mice carrying a null mutation in the Cd46 gene. We found no differ-

ence in the fertilizing ability of sperm from Cd46-null mice in in vivo

and in vitro systems. The only difference we discovered was the

increase in spontaneous acrosome reaction in sperm from Cd46-null

mice compared to that of the wild-type sperm. Differing from our

expectation, without Cd46, the mice were healthy and were fertile in

both sexes.27

Cysteine-rich secretory protein (CRISP). CRISPs have molecular

weights of about 20–30 kDa and are characterized by the presence of

16 conserved cysteine residues, 10 of which are clustered in the C-

terminal domain of the molecule. CRISP1 and CRISP4 are enriched in

the epididymis, CRISP2 is exclusively in developing spermatids in the

testes, and CRISP3 is in wider tissue distribution than the other

CRISPs.28,29 When recombinant mouse CRISP1 and CRISP2 were

added to eggs, they specifically bound to the fusogenic area of mouse

eggs. The antibodies against these proteins significantly inhibit the

fertilization ratio.30,31 Crisp1-disrupted mouse line was produced

and it was found that male and female Crisp1-null mice exhibited

no differences in fertilizing ability compared to wild-type animals in

vivo, even though the sperm from Crisp1-disrupted mice underwent

lower tyrosine phosphorylation of capacitation and reduced ability to

fertilize with egg in vitro.32 It is clear that CRISP1 is dispensable for

fertilization;32 however, as for the other CRISP proteins, we must wait

for the production of gene-disrupted mouse lines.

MN9 antigen (equatorin). MN9 antigen/equatorin is an acrosomal

protein found in various mammalian sperm, including human. It is

Figure 1 Mechanisms of sperm–egg interaction emerging from gene-manipu-

lated animals. Some factors were found to be ‘essential’ after gene disruption.

After being judged by gene disruption, ADAM3, IZUMO1 and CD9 are concluded

to be indispensable factors in zona-binding on sperm, gamete fusion on sperm

and on egg, respectively. As a whole, the explanation of sperm–egg interaction

requires significant modification from the gene manipulation point of view. ZP

consists of ZP1, ZP2 and ZP3 in mouse. Recently, it has been proved that sperm–

egg recognition depends on the cleavage status of ZP2 by gene-manipulated

mice. ADAM, a disintegrin and metalloprotease; ZP, zona pellucida.
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reported that equatorin translocates to the plasma membrane cover-

ing the equatorial region during the acrosome reaction. Equatorin on

plasma membrane is considered to function in sperm–egg fusion,

because MN9 antibody inhibits both in vitro33 and in vivo fertilization

systems34 without affecting zona-penetrating ability of sperm. The

equatorin gene is cloned35 and has been identified as a type 1 trans-

membrane protein of a 40–60 kDa and N,O-sialoglycoprotein.

The production of an equatorin-deficient mouse line is underway

(Toshimori K, 2010, per. commun.).

ESSENTIAL PROTEINS FOR SPERM–EGG INTERACTION

Sperm–zona binding

ADAM3. The first gene-disrupted mouse line that showed male infer-

tility in spite of having a normal looking sperm is the case of Calmegin

disruption reported from our laboratory.36 Subsequently, five more

genes were reported to cause male infertility (Adam1a, Adam2,

Adam3, Ace and Pgap1). Interestingly, sperm from all six different

gene-disrupted mouse lines are reported to have defects in zona-bind-

ing ability and oviduct-migrating ability.19,23,24,36–39 This strongly

indicates the involvement of a common factor in sperm migration

into oviduct and zona-binding ability. As far as examined, all of these

gene knockout mouse lines are reported to have defects in presenting

ADAM3 on their surface except Pgap1. In Pgap1 knockout mouse

lines, the amount of ADAM3 on sperm was shown to be normal,

but there is a chance that microdistribution of ADAM3 is affected

by the elimination of PGAP1. Or else, the result of Pgap1 disruption

indicates that there is an essential factor for sperm–zona binding other

than ADAM3. If not ADAM3, it is highly possible that the same factor

is functioning in sperm migration into oviduct and in zona-binding

ability because we could observe the dual phenotype in six different

gene knockouts. The reason why so many gene disruptions result in

the misplacement of ADAM3 on sperm is not clear. This is certainly an

interesting question to investigate.

ZP proteins. ZP consists of ZP1, ZP2 and ZP3 in mouse (ZP4 is also

found in human ZP). When sperm are mixed with eggs in vitro, many

sperm are observed to bind to the zona. However, sperm ability to bind

to zona is not necessary for sperm to fertilize eggs. It is reported that

the Adam1a-disrupted mouse sperm show an impaired zona-binding

ability but when the sperm are applied to the in vitro fertilization

system using eggs with cumulus cells, the sperm with impaired

zona-binding ability can fertilize eggs without any problem.38

Ironically, although the zona-binding ability turned out to be dispens-

able, the mechanism of sperm binding to zona has been studied by

many researchers. Mouse ZP3 has three important O-glycosylation

sites, Ser-332, and Ser-334, and the mutation into these sites was

predicted to abolish the sperm-binding ability by an in vitro trans-

lation system using somatic cells.40 However, when the same experi-

ment was performed in vivo using gene disruption and transgenic

rescue with glycosylation incompetent mutant ZP3, the glycosylation

in these sites were indicated to be not essential. It was also clarified that

sperm-binding ability is largely regulated by the cleavage of ZP2 after

fertilization.5 However, as indicated above, the zona-binding ability of

sperm seems to be not a critical characteristic for sperm to fertilize

eggs.38

Sperm–egg fusion

CD9. CD9 is a ubiquitously-expressed protein and is expected to

function in various parts of the body. In 2000, three independent

laboratories serendipitously and simultaneously found that a tetraspanin

family CD9 on eggs was essential for eggs to fuse with sperm.6–8 In in

vitro fertilization assays, Cd92/2 eggs failed to fuse with sperm.

Therefore, the eggs remain unfertilized and many sperm continuously

penetrate the zona and result in the accumulation of unfused sperm in

the perivitelline space. This defect is limited to the fusion process because

the infertility of Cd92/2 eggs can be rescued by intracytoplasmic sperm

injection.6 Runge et al.41 found that Cd92/2 eggs have an altered length,

thickness and density of their microvilli by electron microscopy, suggest-

ing that microvilli may participate in sperm–egg fusion. CD9 was the

first fusion-related protein proved to be essential in the gene-manipu-

lated animals.

Glycosylphosphatidylinositol (GPI)-anchored protein. Lipid microdo-

mains called rafts are considered to provide specific fields on cells to

facilitate many cellular processes such as signal transduction, mem-

brane trafficking, cytoskeleton organization and pathogen entry. GPI-

anchored proteins are one of the factors enriched in rafts. Coonrod

et al. reported that treatment of eggs with PI-PLC significantly reduced

sperm–egg binding and fusion.42 When the GPI-anchoring process

was demolished by egg-specific disruption of Pig-a gene using ZP3

promoter-driven Cre and loxP system, the female mice became infer-

tile due to severely impaired fusing ability with sperm.43 There are

some indications of association of CD9 with GPI-anchored proteins,44

but there is another report that tetraspanin web is distinct from raft

microdomains.45 Since both CD9 and GPI-anchored proteins are

found on the egg surface, it would be interesting to know if there is

an associated function between the CD9 and GPI-anchored proteins

for fusion.

IZUMO1. We produced anti-mouse sperm monoclonal antibody

OBF13 that inhibits the fusion process both in vitro and in vivo.46,47

The antigen recognized by OBF13 was not identified for many years.

However, it was recently identified by two-dimensional gel electro-

phoresis and subsequent immunoblotting and liquid chromato-

graphy-tandem mass spectrometry analysis. We named the antigen

‘Izumo’ after a Japanese shrine dedicated to marriage. The gene

encodes a novel immunoglobulin superfamily type I membrane pro-

tein with one extracellular Ig domain. Recently, according to Ellerman

et al.,48 IZUMO proteins consist of four family proteins (IZUMO1 to

IZUMO4). The N-terminal domain between signal peptides and Ig

domain showed a significant homology to each other and was termed

‘Izumo domain’.

Acrosome-reacted sperm can be classified into three major groups

by their IZUMO1-staining pattern: acrosomal cap, equatorial and

whole-head (Figure 2, a2–a4). This indicates that during the acrosome

reaction, IZUMO1 relocates from the anterior head of the sperm to the

site(s) where fusion will take place. Since it is said that sperm launch

fusion to egg at the equatorial segment, either equatorial or whole-

head type IZUMO1 (Figure 2, a3 or a4) can contribute to sperm–egg

fusion.

However, the question of whether or not IZUMO1 functions in

fertilization could not be answered conclusive until the Izumo1-

deficient mice were generated by homologous recombination. After

producing Izumo12/2 mutant mice, we found they were healthy

and showed no overt developmental abnormalities. As we expected,

Izumo12/2 males became sterile despite normal mating behavior and

ejaculated to form normal vaginal plugs. Moreover, the sperm pene-

trated the ZP without any problem but failed to fuse with eggs. This

caused an accumulation of sperm in the perivitelline space of the

eggs49 (Figure 2b).
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Why did Izumo12/2 sperm fail to fuse with eggs? The acrosome

reaction is a prerequisite for sperm to fuse with eggs. To help answer

this, we examined the acrosomal status of Izumo12/2 sperm. In order

to verify the acrosome reaction, we stained the sperm with MN9

monoclonal antibody which immunostains only to the equatorial seg-

ment of ‘acrosome-reacted’ sperm33 (Figure 2b). As shown in the

Figure 2b, the Izumo12/2 sperm was clearly stained with MN9. This

indicated the Izumo12/2 sperm had undergone the acrosome reaction

but failed to fuse with eggs.

We further examined whether the defect of Izumo12/2 sperm is

limited to their fusing ability with eggs or whether it extends to later

developmental stages. To address this question, we injected

Izumo12/2 sperm directly into the cytoplasm of wild-type eggs and

observed the ability of later development. Eggs injected with

Izumo12/2 sperm were successfully activated and the eggs implanted

normally. The embryos developed to term in a normal ratio.49

CHARACTERIZATION OF IZUMO1 PROTEIN

The structure of IZUMO1

As mentioned above, IZUMO1 has an Ig domain with 145 residues of

N-terminal IZUMO domain. Electrophoresis under mildly denatur-

ing conditions, followed by western blot analysis, showed that

IZUMO1 and IZUMO3 formed complexes with other protein(s) on

sperm. Studies using recombinant IZUMO1 constructs suggested the

IZUMO1 domain possesses the ability to form dimers. IZUMO1

might be involved in organizing or stabilizing a multiprotein complex

essential for the function of the membrane fusion machinery.48

IZUMO1 possess a well-conserved N-glycosylation site in the mid-

dle of an Ig loop among species. This site must be actually glycosylated

because if we incubated mouse IZUMO1 from sperm with N-glyco-

sidase, the molecular weight of IZUMO1 decreased to 50 kDa from its

original 56 kDa. Since glycan composition is known to be involved in

many molecular interaction mechanisms,50 we tried to examine the

role of N-glycan on IZUMO1. In order to answer this question, we

produced mouse lines expressing mutated IZUMO1 in which the one

hundred and eighty-third putative N-glycosylation site aspargine was

substituted to glutamine by site-directed mutagenesis under the testis-

specific Calmegin promoter with rabbit b-globin polyadenylation sig-

nal. After we established N183Q-IZUMO1 males, we crossed these

transgenic mouse lines with Izumo12/2 mice and produced a mouse

lines which have sperm with no N-glycosylation site in IZUMO1.

Although the litter sizes were smaller compared to the wild-type

IZUMO1, the N183Q-IZUMO1 rescued the infertile phenotype back

to a fertile one. The efficiency was low, but sperm from N183Q-

IZUMO1 could fuse with eggs (Figure 3a). We extracted proteins from

testis and sperm from the N183Q-IZUMO1 male mice and analyzed

IZUMO1 by western blot analysis. The N183Q-IZUMO1 from testes

was migrated to a 50-kDa band area due to the lack of N-linked glycan.

However, N183Q-IZUMO1 from sperm, a severe fragmentation was

observed which is not observed in wild-type IZUMO1. The major

fragmented bands were observed in the ,30- and ,35-kDa areas

(Figure 3b). Although N183Q-IZUMO1 could rescue the infertile

phenotype, the amount of intact N183Q-IZUMO1 present on sperm

was significantly small compared to that of wild-type IZUMO1 in spite

of an abundance of N183Q-IZUMO1 in testis.51 This indicates that

glycosylation is not essential for the function of IZUMO1, but has a

role in protecting it from fragmentation in cauda epididymis.

IZUMO1-interacting protein

Since IZUMO1 has no ‘fusogenic’ peptide or ‘SNARE’-like structure

in it, we considered the possibility that IZUMO1 might be one of the

components forming fusogenic machinery on sperm. In order to

search for IZUMO1-interacting proteins, we made a transgenic mouse

line producing IZUMO1-His on sperm and introduced it to an

Izumo12/2 background. This allowed us to immunoprecipitate

IZUMO1 using anti-His antibody. The IZUMO1-interacting protein

was purified from acrosome-intact sperm lysate using anti-His

microbeads. We could find a specific 80-kDa band by silver staining

in the purified fraction. After liquid chromatography–tandem mass

spectrometry analysis, the protein was identified as ACE3 (angiotensin

I-converting enzyme 3) (Figure 4a).52,53

The immunofluorescent staining revealed that the ACE3 in fresh

sperm localizes in the acrosomal cap area similar to SP56 and

ACROSIN.54,55 Although the ACE3 was detected in the acrosomal

cap area colocalizing with IZUMO1 before acrosome reaction, it dis-

appeared from acrosome-reacted sperm while IZUMO1 remained

(Figure 4b).

As mentioned earlier, the real function of proteins on sperm cannot

be judged unless the corresponding gene is genetically modified in the

mouse. We therefore generated Ace3-deficient mice by homologous

recombination. Differing from our expectation, the Ace32/2 mice

showed signs of infertility both in males and in females. We analyzed

the fertilizing ability of Ace32/2 sperm in the in vitro fertilization

systems. Again, the Ace32/2 sperm showed normal fertilizing ability

in our in vitro fertilization system using both cumulus-intact and

cumulus-free eggs. These results suggest that ACE3 do bind to

IZUMO1, but this characteristic nature is not required for sperm to

fertilize eggs.53

FACTORS THAT AFFECT THE LOCALIZATION OF IZUMO1

Sperm equatorial segment protein 1 (SPESP1)

It is well accepted that sperm–egg fusion starts at the equatorial seg-

ment of sperm head. IZUMO1 can spread over the entire head cover-

ing the equatorial segment, but this does not explain the equatorial

segment-restricted fusion.49 There are various sperm proteins known

to be distributed only in the equatorial segment. There are chances that

Figure 2 Gamete fusion-related factor IZUMO1. (a) IZUMO1 is an acrosomal

membrane protein that is not exposed before the completion of an acrosome

reaction (1). Acrosome-reacted sperm can be classified into three major groups

by their IZUMO1-staining pattern: acrosomal cap (2), equatorial (3) and whole-

head (4). (b) Accumulation of many sperm in the perivitelline space of the eggs

recovered from the females mated with Izumo12/2 males. Sperm in the perivitel-

line space were labeled with acrosome-reacted sperm-specific monoclonal

antibody MN9.
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one of these proteins is functioning in sperm–egg fusion.35,56–58

SPESP1 was one of the candidates functioning for fusion, because

anti-SPESP1 antibody was known to inhibit human sperm from fusing

with hamster eggs as well as inhibiting sperm–egg fusion in mouse.59

A mouse line lacking Spesp1 was produced by homologous recom-

bination and the fertilizing ability of male mice was examined.60 The

decreased fertilizing ability was found not only in Spesp12/2 sperm but

also in Spesp11/2 sperm. Despite the normal number of ejaculated

sperm and normal motility, Spesp1-disrupted mouse had a decreased

number of pups compared to wild-type mice. When we examined the

localization of IZUMO1 in Spesp1-disrupted sperm, we found

IZUMO1 localized in a broader area in a more spotty manner. The

aberrant distribution of membrane proteins was more prominent in

the case of MN9 antigen. In wild-type sperm, MN9 antigen did not

spread to the equatorial segment before acrosome reaction, but when

Spesp1 was disrupted, MN9 antigen was not restricted to the acroso-

Figure 4 Identification of IZUMO1-interacting proteins. (a) The purified IZUMO1 protein complex was separated by SDS–PAGE and then silver stained. Two specific

80- and 56-kDa bands appeared corresponding to ACE3 and IZUMO1, respectively. (b) Subcellular localization of ACE3 protein in mature sperm was examined in

incubated cauda epididymal sperm. They were stained with anti-ACE3 (red) and anti-IZUMO1 (green) antibodies. The anti-ACE3 antibody stained acrosome-intact

sperm head, but did not react to acrosome-reacted sperm (asterisk). Scale bar520 mm. ACE3, angiotensin I-converting enzyme 3; PAGE, polyacrylamide

gel electrophoresis.

Figure 3 N-linked glycan of IZUMO1 is not essential for fusion. (a) Comparison of the fusing ability of wild-type and N183Q-IZUMO1 sperm. The arrowheads indicate

fused sperm. N183Q-IZUMO1 sperm are able to fuse with eggs, albeit in low yield (fusion index: 0.05 fused sperm/egg). (b) Fragmentation of N183Q-IZUMO1 protein

in cauda epididymal sperm. N183Q-IZUMO1 is fragmented by protease in cauda epididymal sperm (filled arrowheads). Lane 1, Wild-type; Lane 2,

Izumo12/2Izumo1-Tg; Lane 3, Izumo12/2Izumo1N183Q-Tg#1; Lane 4, Izumo12/2Izumo1N183Q-Tg#2.

Figure 5 SPESP1. (a) Many of the Spesp1-disrupted sperm showed abnormal spreading of IZUMO1 after acrosome reaction (indicated by asterisks in the figure). The

localization pattern of MN9 antigen was also significantly affected by the disruption of Spesp1. Scale bars510 mm. (b) Scanning electron microscopy of Spesp1-

deficient and wild-type sperm. In wild-type sperm, the plasma membrane in the acrosome cap area disappeared down to the border of the equatorial segment after

acrosome reaction. However, in Spesp1-deficient sperm, the plasma membrane disappeared from a wider area. As a result, the inner acrosomal membrane was

exposed in most of the equatorial segment area (indicated by arrowheads). Scale bars51 mm. SPESP1, sperm equatorial segment protein 1.
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mal cap area, but to the equatorial segment even before the acrosome

reaction (Figure 5a). When we observed the sperm using a scanning

electron microscope, we found a complete removal of the equatorial

segment membrane from all of the Spesp12/2 sperm (Figure 5b). This

could be an artifact during the preparation of the sperm sample, but it

is certain that the equatorial segment membrane in Spesp12/2 sperm

becomes very fragile compared to that of wild-type sperm and affects

the distribution of IZUMO1.60

TSSK6

TSSK6 is a member of the testis-specific serine kinase and is expressed

postmeiotically in male germ cells. The Tssk6-null mice are infertile

producing mostly morphologically deformed sperm. However, the

morphology is not the only cause for infertility. Thirteen percent of

the sperm from the mice showed a normal morphology, but failed to

fertilize eggs in vitro and failed to fuse with zona-free eggs.

Interestingly, in Tssk62/2 sperm, the relocalization of IZUMO1 after

acrosome reaction is impaired. It is assumed that polymerization of

actin is required for this relocalization, because an inhibitor for actin

polymerization blocks the relocalization of IZUMO1.61 However, in

Tssk62/2 sperm, polymerized actins disappeared from the midpiece

and the posterior head of sperm. Thus, TSSK6 may regulate the local-

ization of IZUMO1 by regulating the polymerization of actin after

acrosome reaction.61

CONCLUSION

Recent observations of infertile phenotypes derived from various

gene-disrupted mouse lines have rendered the old scheme for the

mechanism of fertilization obsolete. Many essential genes were

required to express ADAM3 properly on the sperm surface, as shown

by gene disruption experiments.19,23,24,36–38 This indicates that

ADAM3 is the key molecule in fertilization, but this scheme is not

applicable in human because Adam3 is a pseudogene in human.62

Thus, although a partial mechanism has been clarified, a new (or

modified) outline for the mechanism of fertilization must await the

results of further gene knockout experiments. Concerning fusion

mechanism, it might be important to broaden our focus to wider areas

of the cell–cell fusion process such as the formation of myotubes,

placenta, multinucleated osteoclasts and macrophages, for example.

In any case, the clarification of the molecular mechanism of fertiliza-

tion will benefit clinical treatment of infertility and will underpin the

potential development of novel contraceptive strategies in the future.
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