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Acrosome reaction: relevance of zona pellucida glycoproteins

Satish K Gupta and Beena Bhandari

During mammalian fertilisation, the zona pellucida (ZP) matrix surrounding the oocyte is responsible for the binding of the spermatozoa

to the oocyte and induction of the acrosome reaction (AR) in the ZP-bound spermatozoon. The AR is crucial for the penetration of the ZP

matrix by spermatozoa. The ZP matrix in mice is composed of three glycoproteins designated ZP1, ZP2 and ZP3, whereas in humans, it

is composed of four (ZP1, ZP2, ZP3 and ZP4). ZP3 acts as the putative primary sperm receptor and is responsible for AR induction in

mice, whereas in humans (in addition to ZP3), ZP1 and ZP4 also induce the AR. The ability of ZP3 to induce the AR resides in its

C-terminal fragment. O-linked glycans are critical for the murine ZP3-mediated AR. However, N-linked glycans of human ZP1, ZP3 and

ZP4 have important roles in the induction of the AR. Studies with pharmacological inhibitors showed that the ZP3-induced AR involves

the activation of the Gi-coupled receptor pathway, whereas ZP1- and ZP4-mediated ARs are independent of this pathway. The

ZP3-induced AR involves the activation of T-type voltage-operated calcium channels (VOCCs), whereas ZP1- and ZP4-induced ARs

involve both T- and L-type VOCCs. To conclude, in mice, ZP3 is primarily responsible for the binding of capacitated spermatozoa to the

ZP matrix and induction of the AR, whereas in humans (in addition to ZP3), ZP1 and ZP4 also participate in these stages of fertilisation.
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INTRODUCTION

Mammalian fertilisation is a highly synchronized process that involves

a complex series of interactions between the spermatozoon and the

egg, culminating in their unison. The initial steps in fertilisation

involves the binding of the spermatozoon to the zona pellucida (ZP)

matrix surrounding the egg, followed by induction of the acrosome

reaction (AR) in the zona-bound spermatozoon, a pre-requisite for

penetration of the ZP matrix by the spermatozoon. The spermatozoon

acrosome is a Golgi-derived organelle that forms a cap over the

anterior two-thirds of its nucleus. The AR involves the fusion of the

sperm membrane with the outer acrosomal membrane, resulting in

release of the acrosomal contents and exposure of the inner acrosomal

membrane on the anterior head of the spermatozoon. Various physio-

logical agents, such as progesterone, serum albumin, follicular fluid,

hormones (including biogenic amines), hydrolytic enzymes (particu-

larly proteases), hyaluronic acid and ZP glycoproteins, have been

implicated in the induction of the AR.1–3 In the present paper, we

review the role of the ZP matrix and its constituents in AR induction.

Various downstream signalling pathways involved in the ZP glycopro-

tein-induced AR will also be discussed. On the basis of the current

literature and studies from our group, the salient differences in the ZP

glycoprotein-mediated induction of the AR in mouse versus human

will be highlighted.

INDUCTION OF AR BY THE ZP MATRIX

Composition of the ZP matrix

The mammalian ZP is composed of either three or four glycoproteins

(Figure 1). The murine ZP matrix is composed of three glycoproteins

designated ZP1 (623 amino acids (aa)), ZP2 (713 aa) and ZP3 (424

aa).4 Pig,5 cow6 and dog7 also have three glycoproteins, but instead of

ZP1, ZP4 is present (Figure 1). However, the ZP matrices of rats,

hamsters, bonnet monkeys and humans are composed of four glyco-

proteins: ZP1, ZP2, ZP3 and ZP4.8–13 In humans, ZP1 has a 638-aa

polypeptide backbone; ZP2 has 745 aa; ZP3 has 424 aa and ZP4 has 540

aa. The ZP glycoproteins are heavily glycosylated and have N- as well as

O-linked glycans, which have crucial roles in the spermatozoon–ZP

interaction and AR induction.14,15 The orthologue of the human

Zp4 gene is present in the mouse genome as a pseudogene and is,

therefore, not expressed in the murine ZP matrix.7 In non-mam-

malian species, more than four ZP genes have been detected; for

example, the chicken genome contains six genes (Zp1, Zp2, Zp3,

Zp4, ZpAX and ZpD),16 and the Xenopus genome contains five genes

(Zp2, Zp3, Zp4, ZpD and ZpAX).7

Induction of the AR by the ZP matrix

Pioneering work by Paul Wassarman’s group established that the bind-

ing of mouse sperm to the egg ZP is followed by AR induction.17

Solubilized ZPs isolated from unfertilized mouse eggs induce the AR,

whereas those isolated from embryos fail to do so.17 As observed in

murine models, incubation of capacitated human sperm with intact

zonae or acid-disaggregated zonae also leads to a significant increase

in the AR.18,19 Progesterone and follicular fluid have priming effects

on the ZP-induced AR.20 In contrast to the mouse ZP, the human ZP

of fertilized oocytes retains its ability to bind sperm and also induce the

AR.21 However, the rate of penetration of the human ZP matrix by such

acrosome-reacted sperm is much lower than that of human sperm that
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has reacted with the ZP of unfertilized oocytes. These observations sug-

gest that during fertilisation in humans, the block in polyspermy may

also occur at the level of sperm penetration through the ZP matrix.21

SIGNALLING EVENTS DURING ZP-MEDIATED ACROSOMAL

EXOCYTOSIS

Binding of a capacitated spermatozoon to the ZP matrix activates

transmembrane signals that trigger cellular cascades resulting in the

AR in the zona-bound sperm (Figure 2). At least two different recep-

tor-mediated signalling pathways in the sperm plasma membrane are

responsible for ZP-induced acrosomal exocytosis. One is a Gi protein-

coupled receptor that activates the phospholipase Cb1 (PLCb1)-

mediated signalling pathway, and the other is a tyrosine kinase recep-

tor coupled to PLCc (Figure 2).22 Incubation of mouse sperm mem-

brane preparations with heat solubilized ZP prepared from

unfertilized mouse eggs leads to a dose-dependent increase in guano-

sine triphosphate c-S binding, as well as GTPase activity, suggesting

that the Gi-coupled receptor pathway is involved in the ZP-mediated

induction of the AR.23 The ZP may selectively activate Gi1 and

Gi2 subtypes of Gi in the sperm.24 The participation of a second G

protein, Gaq/11, has also been suggested.25

Gi acts as a signal transducing element downstream of the ZP3–

receptor interactions and couples receptor occupancy to changes in

the ionic conductance and/or a variety of intracellular second messen-

ger system cascades whose activation in turn results in the release of

acrosomal contents.26 One such cascade is likely to be the activation of

sodium/proton (Na1/H1) exchange pumps, resulting in intracellular

alkalinisation.26,27 Second messengers include the adenylate cyclase–

cyclic adenosine monophosphate system, which activates protein

kinase A (PKA), leading to the phosphorylation of specific putative

proteins involved in acrosomal exocytosis. In addition, the activation

of PLCb1 and/or PLCc leads to an increase in the levels of 1,2-diacyl-

glycerol (DAG) and inositol 1,4,5-triphosphate (IP3). DAG may

stimulate protein phosphorylation through PKC, whereas IP3 may

activate intracellular calcium ([Ca21]i) release through the modu-

lation of IP3-sensitive intracellular calcium stores.25–27 Studies with

the mouse ZP solubilized by acid disaggregation have shown that the

ZP-induced AR is a Ca21-dependent exocytotic event involving an

increase in [Ca21]i mediated primarily by T-type voltage-operated

calcium channels (VOCCs).28–30 A role for L-type VOCCs has also

been proposed during induction of the AR.31,32 Inhibition of solubi-

lized ZP-mediated AR induction by 3-quinuclidinyl benzilate (an ant-

agonist of muscarinic receptors), tyrphostin A-48 (a tyrosine kinase

inhibitor) and pertussis toxin (an inhibitor of Gi protein signalling)

suggests that the binding of the ZP to sperm plasma membrane recep-

tors involves several downstream signalling pathways.28

Spermatozoa maintain an inwardly negative membrane potential and

conductance through cation channels, producing a depolarizing cur-

rent. Binding of mouse ZP3 to sperm activates a cation channel (imper-

meable to anions) that conducts monovalent and divalent cations and

leads to sperm membrane depolarisation from about 260 to 230 mV.

Depolarisation of the sperm membrane potential opens the T-type

VOCCs. However, the voltage-dependent inactivation of T currents

occurs within 50–100 ms during depolarisation,29,33,34 thereby termin-

ating the ZP3-induced calcium influx. The T-type channels may also be

modulated by their state of tyrosine phosphorylation during capacita-

tion and ZP3 stimulation.35 However, a sustained release of calcium is

an absolute requirement for an induction of the AR.

After depletion of calcium from internal stores, store-operated

channels, which are voltage-insensitive calcium channels in the plasma

membrane, are activated and mediate the second phase of calcium

entry, referred to as capacitative calcium entry.36 Mammalian tran-

sient receptor potential proteins, which are homologues of the

Drosophila melanogaster photoreceptor cell transient receptor poten-

tial protein, are involved in the ZP3-mediated capacitative calcium

entry in mice.36 Transient receptor potential homologues have also

been located in human sperm.37,38 In addition, members of soluble N-

ethyl maleimide-sensitive factor attachment protein receptor proteins

present in the acrosome region of mammalian sperm may also facil-

itate calcium entry, thereby leading to the AR.39,40 The high intracel-

lular free calcium concentration together with DAG leads to

membrane fusion and finally acrosomal exocytosis.2,41

Induction of the AR by the solubilized human ZP depends on

extracellular Ca2120,42 and involves activation of Gi protein-coupled

receptor pathway signalling,20,42–45 tyrosine kinases,42 PKA, PKC,

phosphoinositide-3 kinase,42,46 T-type VOCCs and gamma aminobu-

tyric acid-A receptor-associated chloride channels.42

ROLES OF ZP CONSTITUENT GLYCOPROTEINS IN INDUCTION

OF THE AR

It seems that the composition and, consequently, the structure of the

mammalian ZP is more complicated than expected because, depend-

Figure 1 Schematic representation of the composition of the ZP in various mammals: The ZP matrix of the mammalian oocyte is composed of either three or four

glycoproteins. The mouse ZP matrix is composed of three glycoproteins, namely, ZP1 (blue), ZP2 (brown) and ZP3 (green). The rat, hamster, bonnet monkey and

human ZP matrices are composed of four glycoproteins: ZP1, ZP2, ZP3 and ZP4 (red). The bovine, porcine and canine ZP matrices contain three glycoproteins, with

ZP4 replacing ZP1. ZP, zona pellucida.
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ing on the species: (i) it is formed by three or four ZP glycoproteins

(Figure 1); (ii) in the three-glycoprotein model, it can be formed by

ZP1, ZP2 and ZP3 or ZP2, ZP3 and ZP4 (Figure 1); and (iii) the

protein responsible for sperm binding and AR induction may vary

across species. To delineate the roles of individual zona proteins, vari-

ous groups have either used the purified protein from a native source

(which makes it difficult to rule out minor contamination from other

egg-associated or zona proteins) or the recombinant protein. Using

recombinant protein ensures that it is not contaminated by other zona

proteins. However, the recombinant proteins may not have the con-

formation and glycosylation of its native counterpart. Nonetheless,

both approaches have been used to delineate the role of individual

zona proteins in binding sperm and inducing the AR.

Table 1 summarizes the role of individual zona proteins in sperm

binding and AR induction.

ZP1

In a murine model, ZP1 purified from ZPs of unfertilized eggs does not

interfere significantly with the binding of sperm to eggs in vitro, sug-

gesting that ZP1 does not bind to sperm.47 Furthermore, ZP1 purified

from mouse eggs has no significant effect on AR compared with the

respective control.17 However, it has been postulated that cross-link-

ing by ZP1, the filaments formed by ZP2–ZP3 heterodimers, may

provide stability and structural integrity to the ZP matrix.48 Studies

in quail and chicken have shown that ZP1 (dimeric in chicken) is

capable of inducing the AR.49,50 Recent studies from our group have

Figure 2 Schematic representation of various signalling pathways involved in ZP-mediated acrosomal exocytosis. Two prominent signalling pathways are known to

operate in the sperm membrane upon ZP binding. One is the pertussis toxin sensitive Gi protein-coupled receptor linked to PLCb1. The other is a putative tyrosine

kinase receptor coupled to PLCc. Receptor activation also induces adenylate cyclase activation, leading to the generation of cAMP and activation of PKA, which

phosphorylates and activates downstream effector proteins. Agonist binding also activates cation channels present on the sperm plasma membrane, leading to

membrane depolarisation and activation of L- and T-type VOCCs. An increase in intracellular alkalinisation also occurs due to activation of sodium/proton exchange

pump that probably increases or amplifies calcium signals. PLCb1 and PLCc hydrolyse PIP2 in the membrane, leading to the generation of IP3 and DAG. DAG mediates

PKC translocation to the plasma membrane and its activation, whereas IP3 mediates calcium entry into the sperm cytosol from intracellular stores. Depletion of calcium

from internal stores leads to activation of voltage insensitive SOCs on the sperm cell surface by an undefined mechanism. This mediates another round of calcium

entry, which leads to activation of components involved in the fusion of the outer acrosomal membrane with the sperm plasma membrane resulting in the AR. AR,

acrosome reaction; cAMP, cyclic adenosine monophosphate; DAG, 1,2-diacylglycerol; PKA, protein kinase A; IP3, 1,4,5-inositol triphosphate; PIP2, phosphatidy-

linositol 4,5-bisphosphate; PLC, phospholipase C; SOC, store-operated channel; VOCC, voltage-operated calcium channel; ZP, zona pellucida.
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shown that both Escherichia coli- and baculovirus-expressed recom-

binant human ZP1 conjugated to fluorescein isothiocyanate bind to

the anterior head of capacitated human spermatozoa (Table 1).31

Baculovirus-expressed recombinant ZP1 also generates a dose-

dependent increase in acrosomal exocytosis, which involves activation

of both T- and L-type VOCCs. The failure of E. coli-expressed recom-

binant human ZP1 to induce the AR suggests that glycosylation of ZP1 is

critical for its ability to induce the AR. Induction of the AR by ZP1 does

not depend on activation of the Gi protein-coupled receptor pathway,

whereas human solubilized ZP- as well as ZP3- (described below)

mediated ARs involve activation of the Gi protein. Inhibition of PKA

and PKC significantly reduces the ZP1-mediated induction of the AR.31

ZP2

Mouse ZP2 purified from ZPs of unfertilized eggs does not interfere

with sperm–egg binding or with induction of the AR.17,51 Monoclonal

and polyclonal antibodies against mouse ZP2 do not affect the initial

binding of the sperm to the egg but do significantly inhibit the binding

of acrosome-reacted sperm to the ZP, suggesting that ZP2 serves as a

secondary receptor for sperm during fertilisation.51 In humans, nei-

ther E. coli- nor baculovirus-expressed recombinant ZP2 binds to the

capacitated acrosome-intact human spermatozoa or induces any sig-

nificant increase in AR.52,53 The fluorescein isothiocyanate-coupled

recombinant human ZP2 has shown binding to the equatorial region

of acrosome-reacted spermatozoa, suggesting that as in mice, human

ZP2 is not involved in the induction of the AR and primarily acts as a

secondary sperm receptor.53 Employing a highly specific monoclonal

antibody (MA-1615) generated against baculovirus-expressed recom-

binant human ZP2 that is devoid of reactivity in ELISA and western

blots with recombinant human ZP3 and ZP4,54 purification of human

ZP2 from ZPs of unfertilized human oocytes from the assisted repro-

duction program has been reported.55 Purified native human ZP2

binds to the acrosomal region of only acrosome-reacted human sper-

matozoa, corroborating the findings observed using recombinant

ZP2.55

ZP3

The initial adhesion event between the mouse sperm and the ZP is a

high affinity event involving about 30 000 binding sites (300 mole-

cules/mm2) ascribed to ZP3, which are sufficient to tether a spermato-

zoon to the extracellular matrix prior to AR induction.56 The contact

subsequently becomes more tenacious, and the bound spermatozoon

undergoes the AR. Among the various physiological and pharmaco-

logical inducers of the AR, ZP3 has been accepted as the natural ago-

nist (except in guinea pig) that initiates the AR upon binding of the

acrosome-intact mammalian spermatozoa to the ZP.57 Purified

mouse ZP3 binds to the anterior head region of the capacitated acro-

some-intact spermatozoon, thus acting as a putative primary sperm

receptor.47 Further, recombinant mouse ZP3 expressed in mam-

malian cells also decreases sperm–ZP binding and triggers acrosomal

exocytosis in capacitated mouse sperm.58 In hamsters and humans,

ZP3 performs the function of primary sperm receptor.52,53,55,59

Studies employing purified native human ZP3,60 as well as baculo-

virus-expressed recombinant ZP3,32,52,53,61 have shown dose-depend-

ent increases in acrosomal exocytosis. Moreover, human ZP3

expressed in mammalian cells also leads to an increase in the AR.62–64

However, there are conflicting observations with respect to the efficacy

of E. coli-expressed recombinant human ZP3 in inducing the AR.

According to one report, E. coli-expressed recombinant ZP3 induces

the AR, but a significant increase in the AR is observed only after 18 h of

incubation of the capacitated sperm with the recombinant protein.65

Our group has shown that E. coli-expressed recombinant human ZP3,

though binding to the anterior head of the capacitated spermatozoon,

fails to induce the AR, suggesting that glycosylation of ZP3 is critical for

AR induction (Table 1).52,53

Delineation of the domain of ZP3 involved in induction of the AR. To

understand the role of ZP3 during fertilisation, it is imperative to

delineate the region(s) responsible for its functional activity. Studies

with insoluble pronase-digested mouse ZP3 revealed that small glyco-

peptides (about 1.5–6.0 kDa) are capable of inhibiting the binding of

Table 1 Zona pellucida glycoproteins involved in sperm binding and induction of the acrosome reaction in mice and humans

Species ZP protein

Function

ReferenceBinding to capacitated spermatozoa Induction of acrosome reaction

Mice Native ZP3 Yes Yes 17, 47

Recombinant ZP3 Yes Yes 58

Humans ZP1

Baculovirus-expressed recombinant protein Yes Yes 31

ZP3

Escherichia coli-expressed recombinant ZP3 ND Yes 65

Yes No 53

Baculovirus-expressed recombinant ZP3 Yes Yes 52, 53

ND Yes 61

ND Yes 32

Mammalian-expressed recombinant ZP3 ND Yes 62

Yes Yes 63

ND Yes 64

Native ZP3 Yes Yes 55,60

ZP4

E. coli-expressed recombinant ZP4 Yes No 53

Baculovirus-expressed recombinant ZP4 Yes Yes 52,53

ND Yes 61

ND Yes 32

Native ZP4 Yes Yes 55, 60

Abbreviations: ND, not done; ZP, zona pellucida.
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sperm to eggs; however, they did not induce the sperm to complete

acrosomal exocytosis.66 Further, mouse ZP3 was digested with either

papain or V8 protease to yield a 55-kDa glycoprotein.67,68 The

,55 kDa glycopeptide was derived from the carboxy-terminal half

of ZP3 and possessed four or five potential N-linked glycosylation

sites, and after removal of N-linked oligosaccharides by treating with

N-glycanase, a 25-kDa glycopeptide was generated. Both untreated

and N-glycanase treated glycopeptides inhibited the binding of sperm

to eggs and induced sperm to complete the AR in vitro to about the

same extent as intact ZP3. These findings suggest that the sperm-

binding site of mouse ZP3 is located in the carboxy-terminal half of

ZP3 and does not involve N-linked oligosaccharides. In addition to the

biochemical approaches, several molecular genetic approaches have

been used to identify the location of the sperm-binding site of ZP3.

These approaches were made possible by the successful cloning and

sequencing of the mouse Zp3 gene and polypeptide in the late

1980s.69–71 Exon swapping and site-directed mutagenesis studies

with recombinant mouse ZP3 expressed in an embryonal carcinoma

(EC) cell line revealed that the sperm combining site is located in

the carboxy-terminal region of ZP3, encoded by exon 7 of the

Zp3 gene,72–74 which corroborates the biochemical approaches

described above.

Recombinant hamster ZP3 expressed in EC cells failed to inhibit in

vitro binding of mouse sperm to eggs. However, substitution of the

hamster Zp3 exon 7 with mouse Zp3 exon 7 of the recombinant ham-

ster ZP3 led to inhibition of the binding of mouse gametes.75 In this

context, a fusion construct consisting of human IgG (Fc) and either

exon 7 or 8 of mouse Zp3 were prepared. An EC cell line carrying the

recombinant gene was produced that secreted chimeric glycoproteins

designated either EC-huIgG (Fc)/mouse ZP3 (7) or EC-huIgG (Fc)/

mouse ZP3 (8). It was observed that only EC-huIgG (Fc)/mouse ZP3

(7) bound specifically to the plasma membrane overlying the sperm

head to a similar extent as mouse ZP3 isolated from eggs, and at

nanomolar concentrations EC-huIgG (Fc)/mouse ZP3 (7) inhibited

the binding of mouse sperm to eggs in vitro. Collectively, these obser-

vations provide evidence that sperm recognize and bind to a region of

mouse ZP3 that is encoded by exon 7 and is immediately downstream

of its ‘ZP domain’. This conclusion is supported by another recent

report on the inhibitory effects of the carboxy-terminal region of

recombinant mouse ZP3 in vitro.76 It is of interest that ZP3 is among

the 10% most different proteins between rodents and humans.77 The

region of ZP3 encoded by exon 7 has undergone a relatively large

number of changes during evolution compared with the remainder

of the polypeptide and is a proposed site of positive Darwinian selec-

tion.78,79

Human ZP3 has a polypeptide backbone of 424 aa, with a signal

peptide (SP) at 1–22 aa that facilitates its secretion (Figure 2a). A tetra

basic consensus furin cleavage site (349–352 aa) is present upstream of

a hydrophobic transmembrane-like domain (387–409 aa). In mature

human ZP3, both the SP and the transmembrane-like domain are

cleaved off. Of 12 cysteine (Cys) residues, eight are conserved in vari-

ous species. The disulphide linkages of the first four Cys residues form

a loop-within-loop motif (Cys46/Cys140 and Cys78/Cys99), and the

second four form a crossover motif (Cys217/Cys282 and Cys239/

Cys300).80 The remaining four Cys residues (Cys319, Cys321, Cys322

and Cys327) lying within a tight cluster towards the C-terminus are

linked by two unassigned disulfide linkages.80 Human ZP3 has a con-

served domain designated the ‘ZP domain’ (45–304 aa), which is also

present in other zona proteins and several extracellular proteins, such

as Tamm–Horsefall protein and a- and b-tectorin.81,82 The human

ZP3 ‘ZP domain’ consists of two conserved subdomains, the N-ter-

minal (45–175 aa) and C-terminal (214–304 aa), separated by a short

protease sensitive hinge (Figure 3a). To delineate the functional

domain of human ZP3, cDNAs encoding various fragments of human

ZP3 were cloned and expressed using a baculovirus expression system

(Figure 3b). Significant induction of the AR was observed when capa-

citated human sperm were incubated with recombinant human ZP3

fragments corresponding to 214–348 and 214–305 aa.83 A recombin-

ant ZP3 N-terminal fragment (23–175 aa) failed to induce any signifi-

cant increase in the AR, suggesting that the functional activity of

human ZP3 also resides in its C-terminal domain (Figure 3b).

ZP4

The mouse ZP matrix is composed of ZP1, ZP2 and ZP3, but lacks a

ZP4. Our group, along with others, has investigated the role of ZP4 in

induction of the AR in humans. E. coli-expressed recombinant human

ZP4 binds to the anterior head of capacitated acrosome-intact human

spermatozoa but does not induce the AR.53 On the other hand, bacu-

lovirus-expressed recombinant human ZP4 not only binds to the

anterior head of capacitated acrosome-intact spermatozoa, but also

induces a dose-dependent increase in the AR32,52,53,61 (Table 1). These

observations were further confirmed by employing immunoaffinity

purified native human ZP4 from solubilized human ZP.55,60 However,

it may be noted that the purified human ZP4 fractions from eggs were

contaminated with ZP1, and thus its ability to induce the AR may have

been due to the combined effect of both ZP1 and ZP4. The importance

of ZP4 either alone or as a hetero-oligomer complex with ZP3 during

sperm binding and subsequent induction of the AR has also been

demonstrated in Xenopus,84 rabbits,85 pigs86 and non-human pri-

mates.87 Hence, in humans, ZP4 also acts in conjunction with ZP1

and ZP3 to induce the AR.

DO DIFFERENT HUMAN ZONA PROTEINS USE THE SAME

DOWNSTREAM SIGNALLING PATHWAY?

As discussed above, in humans (in addition to ZP3), ZP1 and ZP4 also

mediate the induction of the AR.31,32,52,53,60,61 Using pharmacological

inhibitors, subtle differences in the downstream signalling pathways

used by the ZP glycoproteins were observed, which are summarized in

Table 2. ZP3-mediated induction of the AR in humans is inhibited by

pertussis toxin, whereas pertussis toxin does not inhibit ZP1- or ZP4-

mediated acrosomal exocytosis, which indicates that ZP1/ZP4 act

through a Gi protein-independent pathway.31,52,60

T-type VOCC inhibitors (mibefradil and pimozide) inhibit acroso-

mal exocytosis mediated by ZP3 and a C-terminal fragment of recom-

binant ZP3, whereas L-type VOCC inhibitors do not.60,83 However,

ZP1- and ZP4-mediated increases in the AR involve both L- and T-

type VOCCs.31,60 (Table 2). Though ZP3 involves activation of ade-

nylate cyclase, PKA is not critical in ZP3 downstream signalling, sug-

gesting redundancy of PKA and supplementation by parallel signalling

pathways. Activation of PKA, however, is crucial for ZP1-/ZP4-

mediated signalling, as its pharmacological inhibitor, H-89, specif-

ically inhibits the ZP1-/ZP4-induced AR.31,60 These studies suggest

that the downstream signalling pathways involved in the ZP1- and

ZP4-induced ARs are very similar but are different from that

employed by ZP3 (Table 2). Human ZP1 and ZP4 are paralogues that

may have arisen from a common ancestral gene either by gene duplica-

tion or exon swapping.11,78,79 The aa sequence identity of human ZP1

and ZP4 is 47%, which further supports the notion that AR induction

mediated by ZP1/ZP4 is likely to follow similar downstream signalling

events.

Zona-induced acrosome reaction
SK Gupta and B Bhandari

101

Asian Journal of Andrology



ROLE OF OLIGOSACCHARIDE MOIETIES IN SPERM–ZP

INTERACTIONS AND INDUCTION OF THE AR

An understanding of the molecular basis of sperm–egg interactions is

still elusive. Various models suggest that it depends on: (i) carbohyd-

rate moieties present on the opposing gamete surfaces; (ii) protein–

protein interactions; and (iii) protein–carbohydrate interactions. The

protein–carbohydrate interactions are responsible for 75–80% of

sperm binding to the ZP, and remaining sperm bind by protein–pro-

tein interactions.88,89

Murine models

Chemically deglycosylated forms of mouse ZP3 fail to induce the AR,

suggesting that glycosylation of ZP3 is critical for its functional activ-

ity. However, selective removal of N-linked oligosaccharides from

mouse ZP3 by endo-b-N-acetyl-D-glucosamine treatment has no

effect on the induction of the AR, whereas removal of O-linked oli-

gosaccharides by alkaline hydrolysis abrogates its ability to induce the

AR.90 Initial studies implicated galactose in a- or b-linkages at the

non-reducing terminus of O-linked oligosaccharides and N-acetylglu-

cosamine (GlcNAc) in b-linkages as the sugar determinants on mouse

ZP3 that are responsible for the binding of sperm to the ZP.91

However, mice deficient in glycosyl transferase, which amends ter-

minal galactose in an a-linkage, are fully fertile92,93 implicating galac-

tose in b-linkages or GlcNAc or both as critical residues.57 Mannose

has also been suggested to have an important role in murine sperm

receptor activity.94 Subsequently, site-directed mutagenesis revealed

that glycosylation of serine residues at positions 332 and 334 is critical

for the sperm receptor activity of ZP3.73

Human

Binding studies with various lectins suggest that the human ZP matrix

has a high concentration of D-mannose.95,96 The presence of man-

nose-binding sites has been reported on human sperm.97,98 Several

oligosaccharide moieties, such as mannose, GlcNAc, fucose and galac-

Table 2 Downstream signalling pathways associated with human ZP

glycoprotein mediated induction of the acrosome reaction

Pathway Inhibitor

Inhibition of induction

of AR mediated by

ZP3 ZP1 ZP4

Extracellular Ca21 Ethylene glycol tetraacetic acid Yes Yes Yes

Gi protein-coupled receptor Pertussis toxin Yes No No

T-type VOCCs Pimozide, amiloride Yes Yes Yes

L-type VOCCs Verapamil, nifedipine No Yes Yes

PKA H-89 No Yes Yes

PKC Chelerythrine Yes Yes Yes

Abbreviations: AR, acrosome reaction; PKA, protein kinase A; PKC, protein kinase C;

VOCC, voltage-operated calcium channel; ZP, zona pellucida.

Figure 3 Schematic diagram showing the different domains of human ZP3 and their ability to induce the AR. (a) Human ZP3 has a 424-aa polypeptide backbone

comprising an SP (1–22 aa), ZP domain (45–304 aa, yellow), CFCS (349–352 aa, green vertical bar) and TMD (387–409 aa). The ZP domain of ZP3 is composed of N-

(45–175 aa) and C-terminal (214–304 aa) subdomains. Mapped disulfide linkages between different Cys residues are shown in black lines. (b) An N-terminal ZP3

fragment without the SP (23–175 aa), a C-terminal fragment excluding the CFCS (214–348 aa) and the ZP domain C-terminal subdomain (214–305 aa) were

expressed in insect cells and purified recombinant proteins evaluated for AR induction in capacitated human spermatozoa.83 The N-terminal fragment of ZP3 failed to

induce the AR, whereas both C-terminal fragments induced the AR. AR, acrosome reaction; CFCS, consensus furin cleavage site; C, cysteine; SP, signal peptide; TMD,

transmembrane-like domain; ZP, zona pellucida.
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tose, along with complex glycoconjugates bearing selectin-like ligands,

are involved in human sperm–egg binding.99,100 On the contrary,

Chapman and colleagues showed that E. coli-expressed recombinant

human ZP3, presumably lacking glycosylation, induced the AR, sug-

gesting that glycosylation of ZP3 may not be an absolute requirement

for AR induction.65 Our group has expressed recombinant human

ZP1, ZP2, ZP3 and ZP4 using E. coli and baculovirus expression sys-

tems.31,52,53 Both E. coli- and baculovirus-expressed recombinant

human ZP1, ZP3 and ZP4 conjugated with fluorescein isothiocyanate

bind to the anterior head of capacitated acrosome-intact human sper-

matozoa.31,53 The binding patterns of ZP1 and ZP4 revealed that a

higher percentage of sperm show binding of these proteins to the

acrosomal cap as opposed to that seen with ZP3, where equatorial

binding predominates in the acrosome-intact spermatozoa.31,53 The

binding profiles of E. coli- and baculovirus-expressed recombinant

human ZP1, ZP3 and ZP4 are comparable, suggesting that glycosyla-

tion is not critical for binding per se. These results are corroborated by

similar findings that the E. coli-expressed bonnet monkey ZP3 and

ZP4 bind to monkey sperm.87,101

E. coli-expressed recombinant human ZP1, ZP3 and ZP4 fail to

induce any significant increase in the AR, whereas baculovirus-

expressed recombinant ZP1, ZP3 and ZP4 induce dose-dependent

increases in the AR.31,32,52,53,61 These studies suggest that glycosylation

of human zona proteins is critical for induction of the AR. Expression

of recombinant human ZP3 and ZP4 using a baculovirus expression

system in the presence of tunicamycin made available these proteins

with reduced N-linked oligosaccharides.53 Incubation of capacitated

human sperm with the above recombinant proteins significantly

reduces the proteins ability to induce the AR, suggesting that N-linked

glycosylation of human zona proteins are critical for AR induction.53

The importance of N-linked glycosylations has been further confirmed

using immunoaffinity-purified human ZP3 and ZP4 from solubilized

human ZP. Removal of N-linked glycosides from human ZP3 and ZP4

by treatment with N-glycosidase F significantly decreases their

respective abilities to induce the AR.60. Removal of O-linked glycans

by alkali hydrolysis (b-elimination) from either baculovirus-expressed

recombinant human ZP3 and ZP4 or native human ZP3 and ZP4

purified from human eggs has no significant effect on their AR induc-

tion ability.53,60 Hence, in contrast to mouse, where O-linked glyco-

sylation of ZP3 is critical for AR induction, in humans, N-linked

glycosylation of ZP1, ZP3 and ZP4 are critical for mediating the AR.

CONCLUSION

The mouse model for the roles of individual ZP glycoproteins in

binding capacitated acrosome-intact spermatozoa and subsequent

induction of the AR is not tenable in other species. In mice, ZP3 is

primarily responsible for AR induction. In humans (in addition to

ZP3), ZP1 and ZP4 may also be involved in AR induction. In mouse,

O-linked glycans of ZP3 are involved in the AR, whereas in humans,

N-linked glycans of ZP1, ZP3 and ZP4 are critical for AR induction.

Hence, it is imperative that each species be investigated in detail to

determine the roles of zona proteins during fertilisation.
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