|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Effect
of lindane on antioxidant enzymes in epididymis and epididymal sperm of adult
rats
K.C.
Chitra, R. Sujatha, C. Latchoumycandane, P.P. Mathur School
of Life Sciences, Pondicherry University, Pondicherry 605 014 , India Asian J Androl 2001 Sep; 3: 205-208 Keywords:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Parameters |
Control |
Treated |
| Catalasea |
2.770.13 |
1.170.25* |
| Superoxide
dismutaseb |
15.01.52 |
7.611.77* |
| Glutathione
reductasec |
28.12.71 |
19.70.86* |
| Glutathione
peroxidasec |
40.712.2 |
29.87.01* |
| H2O2
generation assayd |
0.380.02 |
1.100.08* |
| Lipid
peroxidatione |
3.750.20 |
5.060.50* |
*P<0.05
vs the control group
a mol H2O2
consumed/ min/ mg protein at 32
bnmol pyrogallol oxidized/ min/ mg protein at 32
cnmol NADPH oxidized/ min/
mg protein at 32
dnmol H2O2
generated/ min/ mg protein at 32
emol malondialdehyde produced/ min/ mg protein
Table
2. Effect of lindane
on antioxidant enzymes in epididymal sperm
of adult rat (n=6).
| Parameters |
Control |
Treated |
|
Catalasea |
||
|
(mg
protein) |
3.920.18 |
2.820.27* |
|
(mg
DNA) |
1.810.12 |
1.400.16* |
|
Superoxide
dismutaseb |
||
|
(mg
protein) |
26.542.38 |
6.671.12* |
|
(mg
DNA) |
20.302.82 |
12.51.49* |
|
Glutathione
reductasec |
||
|
(mg
protein) |
28.452.73 |
24.131.48* |
|
(mg
DNA) |
12.200.69 |
10.000.56* |
|
Glutathione
peroxidasec |
||
|
(mg
protein) |
30.263.12 |
22.482.98* |
|
(mg
DNA) |
26.303.35 |
19.901.12* |
|
H2O2
generation assayd |
||
|
(mg
protein) |
1.170.28 |
1.710.22* |
|
(mg
DNA) |
0.530.12 |
0.780.09* |
|
Lipid
peroxidatione |
||
|
(mg
protein) |
5.280.23 |
5.610.44* |
|
(mg
DNA) |
4.220.37 |
5.740.39* |
*P<0.05
vs the control group
amol H2O2
consumed/ min at 32
bnmol pyrogallol oxidized/
min at 32
cnmol NADPH oxidized/ min
at 32
dnmol H2O2 generated/ min at 32
emol malondialdehyde produced/ min
4
Discussion
Pro-oxidant
and antioxidant balance is vital for normal biological functioning of
the cells. If any of the complex components such as environmental contaminants
affecting this balance can provoke excessive production of ROS that is
effectively scavenged by endogenous antioxidant defence system[4].
In spermatozoa, several antioxidant systems as glutathione peroxidase[21],
superoxide dismutase[22]
and catalase[23]
are known to operate. Cytoplasm of spermatozoa is extremely limited in
volume and localization, so the polyunsaturated fatty acids that bound
in the sperm plasma membrane are very susceptible to ROS attack[24].
In conclusion, the present studies reflect that lindane induces oxidative stress in rat epididymis and epididymal sperm by increasing ROS and decreasing the levels of antioxidant enzymes with a possible reduction in epididymal sperm counts and epididymal sperm motility.
Acknowledgements
References
[1]
Raizada RB, Misra P, Saxena P, Datta KK, Dikshith TS. Weak estrogenic
activity of lindane in rats. J Toxicol Environ Health
1980; 6: 483-92.
[2] Chadwick RW, Cooper RL, Chang J, Rehnberg GL, McElroy WK. Possible
antiestrogenic activity of lindane in female rats. J Biochem Toxicol 1988;
3: 147-58.
[3] Dalsenter PR, Faqi AS, Webb J, Merker HJ, Chahoud I. Reproductive
toxicity and tissue
concentrations of lindane in adult male rats. Hum Exp Toxicol 1996;15:
406-10.
[4] Jamieson D. Oxygen toxicity and reactive oxygen metabolites in mammals.
Free Rad Biol Med 1989; 7: 87-108.
[5] Harris C, Lee E, Hiranruengchok R, McNutt TL, Larson SJ, Akeila S,
Thorsrud BA. Characteristics of glutathione redox and antioxidant status
in post implantation rat embryos: response to oxidative stress. Toxicologist
1996; 30: 2.
[6] Lenzi A. Lipoperoxidation damage of spermatozoa polyunsaturated fatty
acids (PUFA): Scavenger mechanisms and possible scavenger therapies. Front
Biosc 2000; 5: 1-15.
[7] Videla LA, Arisi ACM, Fuzaro AP, Koch OR, Junqueira VBC. Prolonged
Phenobarbital pretreatment abolishes the early oxidative stress component
induced in the liver by acute lindane intoxication. Toxicol Lett
2000; 115: 45-51.
[8] Sujatha R, Chitra KC, Latchoumycandane C, Mathur PP. Effect of lindane
on testicular antioxidant system and steroidogenic enzymes in adult rats.
Asian J Androl 2001; 3: 135-8.
[9] Linder RE, Strader LF, McElroy WK. Measurement of epididymal sperm
motility as a test variable in the rat.
Bull Environ Contam Toxicol
1986; 36: 317-24.
[10] Claiborne A. Catalase activity.
In: Greenwald R,editor. CRC Handbook of methods for oxygen radical
research. Florida, Boca Raton: CRC Press; 1985. p 283-4.
[11] Marklund S, Marklund G. Involvement of superoxide anion radical in
antioxidation of pyrogallol and a constituent assay for superoxide dismutase.
Eur J Biochem 1974;
47: 469-74.
[12] Carlberg I, Mannervik BJ. Purification and characterization of the
flavoenzyme glutathione reductase from rat liver. J Biol Chem
1975; 250: 5474-80.
[13] Mohandas J, Marshall JJ, Duggin GG, Horvath JS, Tiller DJ. Low activities
of glutathione-related enzymes as factors in the genesis of urinary bladder
cancer. Cancer Res 1984; 44: 5086-91.
[14] Pick E, Keisari Y. Superoxide anion and H2O2
production by chemically elicited peritoneal macrophages-induced by multiple
nonphagocytic stimuli. Cell Immunol
1981; 59: 301-18.
[15] Ohkawa H, Ohishi N, Yagi K. Assay for lipid peroxidation in animal
tissues by thiobarbituric
acid reaction. Anal Biochem
1979; 95: 351-8.
[16] Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement
with the folin phenol
reagent. J Biol Chem 1951;
193: 265-75.
[17] Burton K. A study of the conditions and mechanism of the diphenylamine
reaction for the colorimetric estimation of deoxyribonucleic acid.
Biochem J 1956; 62:
316-20.
[18] WHO Report International programme on chemical safety. In: Health
and Safety Guide-Lindane. Geneva: WHO; 1991. p14.
[19] Alm H, Tiemann U, Torner H. Influence of organochlorine pesticides
on development of mouse embryos in vitro.
Reprod Toxicol 1996;
10: 321-6.
[20] Chitra KC, Latchoumycandane C, Mathur PP. Chronic-effect of endosulfan
on the testicular
functions of rat. Asian J Androl 1999; 1: 203-6.
[21] Alvarez JG, Storey BT. Role of glutathione peroxidase in protecting
mammalian spermatozoa from loss of motility caused by spontaneous lipid
peroxidation.Gamete Res 1989; 23: 77-90.
[22] Mennela MRF, Jones R. Properties of spermatozoal superoxide dismutase
and lack of involvement of superoxides in metals ion\|catalyzed lipid
peroxidation reactions in semen. Biochem J 1980; 191: 289-97.
[23] Jeulin C, Soufir JC, Weber P, Martin DL, Calvayrae R. Catalase activity
in human spermatozoa
and seminal plasma. Gamete Res 1989; 24: 185-96.
[24] Aitken RS, Buckingham D, Harkiss D. Use of a xanthine oxidase free
radical generating
system to investigate the cytotoxic effects of reactive oxygen species
on human spermatozoa. J Reprod Fertil 1993; 97: 441-50.
[25] Ichikawa T, Oeda T, Ohmori H, Schill WB. Reactive oxygen species
influence the acrosome
reaction but not acrosin activity in human spermatozoa. Int J Androl
1999; 22: 37-42.
Correspondence
to: Dr.
P.P. Mathur, School of Life Sciences, Pondicherry University,
Pondicherry 605 014, India.
Tel:
+91-413-655
212
Fax: +91-413-655 211
E-mail: ppmathur@pu.pon.nic.in;
ppmathur@yahoo.com
Received 2001-084-10 Accepted
2001-08-27
