Home  |   Archive  |   Online Submission  |   News & Events  |   Subscribe  |   APFA  |   Society  |   Contact Us  |   中文版
Search   
 
Journal

Ahead of print
Authors' Accepted
    Manuscripts
new!
Current Issue
Archive
Acknowledgments
Special Issues
Browse by Category

Manuscript Submission

Online Submission
Online Review
Instruction for Authors
Instruction for Reviewers
English Corner new!

About AJA

About AJA
Editorial Board
Contact Us
News

Resources & Services

Advertisement
Subscription
Email alert
Proceedings
Reprints

Download area

Copyright licence
EndNote style file
Manuscript word template
Guidance for AJA figures
    preparation (in English)

Guidance for AJA figures
    preparation (in Chinese)

Proof-reading for the
    authors

AJA Club (in English)
AJA Club (in Chinese)

 
Abstract

Volume 13, Issue 1 (January 2011) 13, 159–165; 10.1038/aja.2010.80

The opening of maitotoxin-sensitive calcium channels induces the acrosome reaction in human spermatozoa: differences from the zona pellucida

Julio C Chávez1, Gerardo A de Blas1, José L de la Vega-Beltrán1, Takuya Nishigaki1, Mayel Chirinos2, María Elena González-González2, Fernando Larrea2, Alejandra Solís1

1 Department of Developmental Genetics and Molecular Physiology, Biotechnology Institute, UNAM, Cuernavaca, Mexico
2 Department of Reproduction Biology, National Institute of Medical Sciences and Nutrition ‘Salvador Zubirán’, Mexico City, Mexico

Correspondence: Dr CL Treviño, (ctrevino@ibt.unam.mx)

Abstract

The acrosome reaction (AR), an absolute requirement for spermatozoa and egg fusion, requires the influx of Ca2+ into the spermatozoa through voltage-dependent Ca2+ channels and store-operated channels. Maitotoxin (MTx), a Ca2+-mobilizing agent, has been shown to be a potent inducer of the mouse sperm AR, with a pharmacology similar to that of the zona pellucida (ZP), possibly suggesting a common pathway for both inducers. Using recombinant human ZP3 (rhZP3), mouse ZP and two MTx channel blockers (U73122 and U73343), we investigated and compared the MTx- and ZP-induced ARs in human and mouse spermatozoa. Herein, we report that MTx induced AR and elevated intracellular Ca2+ ([Ca2+]i) in human spermatozoa, both of which were blocked by U73122 and U73343. These two compounds also inhibited the MTx-induced AR in mouse spermatozoa. In disagreement with our previous proposal, the AR triggered by rhZP3 or mouse ZP was not blocked by U73343, indicating that in human and mouse spermatozoa, the AR induction by the physiological ligands or by MTx occurred through distinct pathways. U73122, but not U73343 (inactive analogue), can block phospholipase C (PLC). Another PLC inhibitor, edelfosine, also blocked the rhZP3- and ZP-induced ARs. These findings confirmed the participation of a PLC-dependent signalling pathway in human and mouse zona protein-induced AR. Notably, edelfosine also inhibited the MTx-induced mouse sperm AR but not that of the human, suggesting that toxin-induced AR is PLC-dependent in mice and PLC-independent in humans.

Keywords: acrosome reaction; calcium channels; human sperm; maitotoxin; mouse sperm


PDF | 中文摘要 |

 
Browse:  2735
 
Copyright 1999-2017  Shanghai Materia Medica, Shanghai Jiao Tong University.  All rights reserved