Home  |   Archive  |   Online Submission  |   News & Events  |   Subscribe  |   APFA  |   Society  |   Contact Us  |   中文版
Search   
 
Journal

Ahead of print
Authors' Accepted
    Manuscripts
new!
Current Issue
Archive
Acknowledgments
Special Issues
Browse by Category

Manuscript Submission

Online Submission
Online Review
Instruction for Authors
Instruction for Reviewers
English Corner new!

About AJA

About AJA
Editorial Board
Contact Us
News

Resources & Services

Advertisement
Subscription
Email alert
Proceedings
Reprints

Download area

Copyright licence
EndNote style file
Manuscript word template
Guidance for AJA figures
    preparation (in English)

Guidance for AJA figures
    preparation (in Chinese)

Proof-reading for the
    authors

AJA Club (in English)
AJA Club (in Chinese)

 
Abstract

Volume 15, Issue 6 (November 2013) 15, 753–758; 10.1038/aja.2013.84

The miRNA let-7a1 inhibits the expression of insulin-like growth factor 1 receptor (IGF1R) in prostate cancer PC-3 cells

Li-Na Wang*, Wei-Wen Chen*, Ju Zhang, Chao-Yang Li, Chun-Yan Liu, Jing Xue, Peng-Ju Zhang and An-Li Jiang

Institution of Biochemistry and Molecular Biology, Medical School of Shandong University, Jinan 250012, China

*These authors contributed equally to this work.

Correspondence: Dr AL Jiang, (jianganli@sdu.edu.cn)

Received 16 March 2013; Revised 12 May 2013; Accepted 1 June 2013 Advance online publication 26 August 2013

Abstract

Reduced microRNA (miRNA) let-7a expression and the activation of insulin-like growth factor-1 receptor (IGF1R) signalling are both involved in prostate cancer and progression. In the present study, we demonstrated that the growth inhibitory effect of let-7a1 is directly related to targeting IGF1R gene expression in PC-3 cells. TargetScan predicted three potential target sites (T1, T2 and T3) of let-7a in the 3′ untranslational region (3′ UTR) of IGF1R mRNA. Real-time PCR, Western blot and luciferase reporter assays were used to detect the effects of let-7a1 overexpression or let-7a1 inhibitor on the IGF1R gene expression in PC-3 cells. The results indicated that let-7a1 could inhibit IGF1R expression by directly targeting the T1 and T2 sites in the 3′ UTR of the IGF1R mRNA. We then used RT-PCR, luciferase reporter assays, 3-(4,5-dimethylthiazol-2-yl)-2,5- diphenyl-2H-tetrazolium bromide (MTT) assay, flow cytometry and Hoechst 33342 staining to examine whether let-7a1-mediated inhibition of IGF1R expression also affects the IGF1R-mediated signalling events, including Elk1 activity and c-fos gene expression, proliferation, apoptosis and cell cycle. We demonstrated that let-7a1-mediated IGF1R downregulation was accompanied by attenuation of Elk1 activity and c-fos expression, inhibition of cell proliferation, enhanced apoptosis and cell cycle arrest, and that loss function of let-7a1 via inhibition can upregulate IGF1R accompanied by an increase of Elk1 activity and c-fos expression, thereby enhancing cell proliferation. Altogether, these findings suggest that let-7a may be novel therapeutic candidate for prostate cancer.

Keywords: IGF1R; microRNA (miRNA); prostate cancer

PDF | PDF | 中文摘要 |

 
Browse:  3219
 
Asian Journal of Andrology CN 31-1795/R ISSN 1008-682X  Copyright © 2023  Shanghai Materia Medica, Chinese Academy of Sciences.  All rights reserved.