Home  |   Archive  |   Online Submission  |   News & Events  |   Subscribe  |   APFA  |   Society  |   Contact Us  |   中文版
Search   
 
Journal

Ahead of print
Authors' Accepted
    Manuscripts
new!
Current Issue
Archive
Acknowledgments
Special Issues
Browse by Category

Manuscript Submission

Online Submission
Online Review
Instruction for Authors
Instruction for Reviewers
English Corner new!

About AJA

About AJA
Editorial Board
Contact Us
News

Resources & Services

Advertisement
Subscription
Email alert
Proceedings
Reprints

Download area

Copyright licence
EndNote style file
Manuscript word template
Guidance for AJA figures
    preparation (in English)

Guidance for AJA figures
    preparation (in Chinese)

Proof-reading for the
    authors

AJA Club (in English)
AJA Club (in Chinese)

 
Abstract

Volume 27, Issue 1 (January 2025) 27, 37–43; 10.4103/aja202457

A behind-the-scenes role of BDNF in the survival and differentiation of spermatogonia

Tomizawa, Shin-ichi*; Kuroha, Kazushige*; Ono, Michio; Nakajima, Kuniko; Ohbo, Kazuyuki

Department of Histology and Cell Biology, Yokohama City University School of Medicine, Yokohama 236-0004, Japan

Correspondence: Dr. K Ohbo (kohbo@yokohama-cu.ac.jp)

Originally published: August 13, 2024 Received: October 31, 2023 Accepted: May 17, 2024

Abstract

Mouse spermatogenesis entails the maintenance and self-renewal of spermatogonial stem cells (SSCs), which require a complex web-like signaling network transduced by various cytokines. Although brain-derived neurotrophic factor (BDNF) is expressed in Sertoli cells in the testis, and its receptor tropomyosin receptor kinase B (TrkB) is expressed in the spermatogonial population containing SSCs, potential functions of BDNF for spermatogenesis have not been uncovered. Here, we generate BDNF conditional knockout mice and find that BDNF is dispensable for in vivo spermatogenesis and fertility. However, in vitro, we reveal that BDNF-deficient germline stem cells (GSCs) exhibit growth potential not only in the absence of glial cell line-derived neurotrophic factor (GDNF), a master regulator for GSC proliferation, but also in the absence of other factors, including epidermal growth factor (EGF), basic fibroblast growth factor (bFGF), and insulin. GSCs grown without these factors are prone to differentiation, yet they maintain expression of promyelocytic leukemia zinc finger (Plzf), an undifferentiated spermatogonial marker. Inhibition of phosphoinositide 3-kinase (PI3K), mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK), and Src pathways all interfere with the growth of BDNF-deficient GSCs. Thus, our findings suggest a role for BDNF in maintaining the undifferentiated state of spermatogonia, particularly in situations where there is a shortage of growth factors.

Keywords: BDNF; spermatogenesis; spermatogonia; stem cells

Full Text | PDF |

 
Browse:  209
 
Asian Journal of Andrology CN 31-1795/R ISSN 1008-682X  Copyright © 2023  Shanghai Materia Medica, Chinese Academy of Sciences.  All rights reserved.