Home  |   Archive  |   Online Submission  |   News & Events  |   Subscribe  |   APFA  |   Society  |   Contact Us  |   中文版

Ahead of print
Authors' Accepted
Current Issue
Special Issues
Browse by Category

Manuscript Submission

Online Submission
Online Review
Instruction for Authors
Instruction for Reviewers
English Corner new!

About AJA

About AJA
Editorial Board
Contact Us

Resources & Services

Email alert

Download area

Copyright licence
EndNote style file
Manuscript word template
Guidance for AJA figures
    preparation (in English)

Guidance for AJA figures
    preparation (in Chinese)

Proof-reading for the

AJA Club (in English)
AJA Club (in Chinese)


Volume 22, Issue 5 (September 2020) 22, 500–506; 10.4103/aja.aja_109_19

Prokineticin 2 overexpression induces spermatocyte apoptosis in varicocele in rats

Ying Li1, Ting Zhou2, Yu-Fang Su1, Zhi-Yong Hu1, Jia-Jing Wei1, Wei Wang1, Chun-Yan Liu1, Kai Zhao1, Hui-Ping Zhang1

1 Family Planning Research Institute/Reproductive Medicine Center, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
2 Department of Gynecology and Obstetrics, Union Hospital, Tongji Medical College, Huangzhong University of Science and Technology, Wuhan 430030, China

Correspondence: Dr. HP Zhang (zhpmed@126.com)

Date of Submission 18-Dec-2018 Date of Acceptance 25-Jul-2019 Date of Web Publication 19-Nov-2019


Varicocele is one of the most important causes of male infertility, as this condition leads to a decline in sperm quality. It is generally believed that the presence of varicocele induces an increase in reactive oxygen species levels, leading to oxidative stress and sperm apoptosis; however, the specific pathogenic mechanisms affecting spermatogenesis remain elusive. Prokineticin 2 (PK2), a secretory protein, is associated with multiple biological processes, including cell migration, proliferation, and apoptosis. In the testis, PK2 is expressed in spermatocytes under normal physiological conditions. To investigate the role of PK2 in varicocele, a rat varicocele model was established to locate and quantify the expression of PK2 and its receptor, prokineticin receptor 1 (PKR1), by immunohistochemistry and quantitative real-time PCR assays (qPCR). Moreover, H2O2 was applied to mimic the oxidative stress state of varicocele through coculturing with a spermatocyte-derived cell line (GC-2) in vitro, and the apoptosis rate was detected by flow cytometry. Here, we illustrated that the expression levels of PK2 and PKR1 were upregulated in the spermatocytes of the rat model. Administration of H2O2 stimulated the overexpression of PK2 in GC-2. Transfection of recombinant pCMV-HA-PK2 into GC-2 cells promoted apoptosis by upregulating cleaved-caspase-3, caspase-8, and B cell lymphoma 2-associated X; downregulating B cell lymphoma 2; and promoting the accumulation of intracellular calcium. Overall, we revealed that the varicocele-induced oxidative stress stimulated the overexpression of PK2, leading to apoptosis of spermatocytes. Our study provides new insight into the mechanisms underlying oxidative stress-associated male infertility and suggests a novel therapeutic target for male infertility.

Keywords: apoptosis; oxidative stress; prokineticin 2; varicocele

Full Text | PDF |

Browse:  50
Copyright 1999-2017  Shanghai Materia Medica, Shanghai Jiao Tong University.  All rights reserved