Home  |   Archive  |   Online Submission  |   News & Events  |   Subscribe  |   APFA  |   Society  |   Contact Us  |   中文版
Search   
 
Journal

Ahead of print
Authors' Accepted
    Manuscripts
new!
Current Issue
Archive
Acknowledgments
Special Issues
Browse by Category

Manuscript Submission

Online Submission
Online Review
Instruction for Authors
Instruction for Reviewers
English Corner new!

About AJA

About AJA
Editorial Board
Contact Us
News

Resources & Services

Advertisement
Subscription
Email alert
Proceedings
Reprints

Download area

Copyright licence
EndNote style file
Manuscript word template
Guidance for AJA figures
    preparation (in English)

Guidance for AJA figures
    preparation (in Chinese)

Proof-reading for the
    authors

AJA Club (in English)
AJA Club (in Chinese)

 
Abstract

Volume 23, Issue 1 (January 2021) 23, 24–29; 10.4103/aja.aja_25_20

Next-generation sequencing: toward an increase in the diagnostic yield in patients with apparently idiopathic spermatogenic failure

Rossella Cannarella1, Rosita A Condorelli1, Stefano Paolacci2, Federica Barbagallo1, Giulia Guerri2, Matteo Bertelli2, Sandro La Vignera1, Aldo E Calogero1

1 Department of Clinical and Experimental Medicine, University of Catania, Catania 95123, Italy
2 MAGI EUREGIO, Bolzano 39100, Italy

Correspondence: Dr. RA Condorelli (rosita.condorelli@unict.it)

Date of Submission 10-Nov-2019 Date of Acceptance 06-Apr-2020 Date of Web Publication 10-Jul-2020

Abstract

A large proportion of patients with idiopathic spermatogenic failure (SPGF; oligozoospermia or nonobstructive azoospermia [NOA]) do not receive a diagnosis despite an extensive diagnostic workup. Recent evidence has shown that the etiology remains undefined in up to 75% of these patients. A number of genes involved in germ-cell proliferation, spermatocyte meiotic divisions, and spermatid development have been called into play in the pathogenesis of idiopathic oligozoospermia or NOA. However, this evidence mainly comes from case reports. Therefore, this study was undertaken to identify the molecular causes of SPGF. To accomplish this, 15 genes (USP9Y, NR5A1, KLHL10, ZMYND15, PLK4, TEX15, TEX11, MEIOB, SOHLH1, HSF2, SYCP3, TAF4B, NANOS1, SYCE1, and RHOXF2) involved in idiopathic SPGF were simultaneously analyzed in a cohort of 25 patients with idiopathic oligozoospermia or NOA, accurately selected after a thorough diagnostic workup. After next-generation sequencing (NGS) analysis, we identified the presence of rare variants in the NR5A1 and TEX11 genes with a pathogenic role in 3/25 (12.0%) patients. Seventeen other different variants were identified, and among them, 13 have never been reported before. Eleven out of 17 variants were likely pathogenic and deserve functional or segregation studies. The genes most frequently mutated were MEIOB, followed by USP9Y, KLHL10, NR5A1, and SOHLH1. No alterations were found in the SYCP3, TAF4B, NANOS1, SYCE1, or RHOXF2 genes. In conclusion, NGS technology, by screening a specific custom-made panel of genes, could help increase the diagnostic rate in patients with idiopathic oligozoospermia or NOA.

Keywords: azoospermia; next-generation sequencing; oligozoospermia; spermatogenetic failure

Full Text | PDF |

 
Browse:  133
 
Copyright 1999-2017  Shanghai Materia Medica, Shanghai Jiao Tong University.  All rights reserved