Home  |   Archive  |   Online Submission  |   News & Events  |   Subscribe  |   APFA  |   Society  |   Contact Us  |   中文版
Search   
 
Journal

Ahead of print
Authors' Accepted
    Manuscripts
new!
Current Issue
Archive
Acknowledgments
Special Issues
Browse by Category

Manuscript Submission

Online Submission
Online Review
Instruction for Authors
Instruction for Reviewers
English Corner new!

About AJA

About AJA
Editorial Board
Contact Us
News

Resources & Services

Advertisement
Subscription
Email alert
Proceedings
Reprints

Download area

Copyright licence
EndNote style file
Manuscript word template
Guidance for AJA figures
    preparation (in English)

Guidance for AJA figures
    preparation (in Chinese)

Proof-reading for the
    authors

AJA Club (in English)
AJA Club (in Chinese)

 
Abstract

Volume 24, Issue 1 (January 2022) 24, 102–108; 10.4103/aja.aja_38_21

Polymerase chain reaction-based assays facilitate the breeding and study of mouse models of Klinefelter syndrome

Hai-Xia Zhang1, Yu-Lin Zhou1, Wen-Yan Xu1, Xiao-Lu Chen1, Jia-Yang Jiang2, Xiao-Man Zhou1, Zeng-Ge Wang3, Rong-Qin Ke2, Qi-Wei Guo1

1 United Diagnostic and Research Center for Clinical Genetics, Women and Children's Hospital, School of Medicine and School of Public Health, Xiamen University, Xiamen 361102, China
2 School of Biomedical Sciences and School of Medicine, Huaqiao University, Quanzhou 362021, China
3 Beijing Children's Hospital, Capital Medical University, Beijing 100045, China

Correspondence: Dr. QW Guo (guoqiwei@xmu.edu.cn)

Date of Submission 27-Nov-2020 Date of Acceptance 22-Mar-2021 Date of Web Publication 28-May-2021

Abstract

Klinefelter syndrome (KS) is one of the most frequent genetic abnormalities and the leading genetic cause of nonobstructive azoospermia. The breeding and study of KS mouse models are essential to advancing our knowledge of the underlying pathological mechanism. Karyotyping and fluorescence in situ hybridization are reliable methods for identifying chromosomal contents. However, technical issues associated with these methods can decrease the efficiency of breeding KS mouse models and limit studies that require rapid identification of target mice. To overcome these limitations, we developed three polymerase chain reaction-based assays to measure specific genetic information, including presence or absence of the sex determining region of chromosome Y (Sry), copy number of amelogenin, X-linked (Amelx), and inactive X specific transcripts (Xist) levels. Through a combined analysis of the assay results, we can infer the karyotype of target mice. We confirmed the utility of our assays with the successful generation of KS mouse models. Our assays are rapid, inexpensive, high capacity, easy to perform, and only require small sample amounts. Therefore, they facilitate the breeding and study of KS mouse models and help advance our knowledge of the pathological mechanism underlying KS.

Keywords: 40,XXY* mouse; 41,XXY mouse; Klinefelter syndrome; mouse model

Full Text | PDF |

 
Browse:  687
 
Asian Journal of Andrology CN 31-1795/R ISSN 1008-682X  Copyright © 2023  Shanghai Materia Medica, Chinese Academy of Sciences.  All rights reserved.