Home  |   Archive  |   Online Submission  |   News & Events  |   Subscribe  |   APFA  |   Society  |   Contact Us  |   中文版
Search   
 
Journal

Ahead of print
Authors' Accepted
    Manuscripts
new!
Current Issue
Archive
Acknowledgments
Special Issues
Browse by Category

Manuscript Submission

Online Submission
Online Review
Instruction for Authors
Instruction for Reviewers
English Corner new!

About AJA

About AJA
Editorial Board
Contact Us
News

Resources & Services

Advertisement
Subscription
Email alert
Proceedings
Reprints

Download area

Copyright licence
EndNote style file
Manuscript word template
Guidance for AJA figures
    preparation (in English)

Guidance for AJA figures
    preparation (in Chinese)

Proof-reading for the
    authors

AJA Club (in English)
AJA Club (in Chinese)

 
Abstract

Volume 22, Issue 2 (March 2020) 22, 192–199; 10.4103/aja.aja_44_19

Participation of the inositol 1,4,5-trisphosphate-gated calcium channel in the zona pellucida- and progesterone-induced acrosome reaction and calcium influx in human spermatozoa

Ying-Ya Li, Yan-Ping Jia, Li-Yan Duan, Kun-Ming Li

Center of Reproductive Medicine, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai 201204, China

Correspondence: Dr. KM Li (likunming@51mch.com)

04-Jun-2019

Abstract

The acrosome reaction is a prerequisite for fertilization, and its signaling pathway has been investigated for decades. Regardless of the type of inducers present, the acrosome reaction is ultimately mediated by the elevation of cytosolic calcium. Inositol 1,4,5-trisphosphate-gated calcium channels are important components of the acrosome reaction signaling pathway and have been confirmed by several researchers. In this study, we used a novel permeabilization tool BioPORTER® and first demonstrated its effectiveness in spermatozoa. The inositol 1,4,5-trisphosphate type-1 receptor antibody was introduced into spermatozoa by BioPORTER® and significantly reduced the calcium influx and acrosome reaction induced by progesterone, solubilized zona pellucida, and the calcium ionophore A23187. This finding indicates that the inositol 1,4,5-trisphosphate type-1 receptor antibody is a valid inositol 1,4,5-trisphosphate receptor inhibitor and provides evidence of inositol 1,4,5-trisphosphate-gated calcium channel involvement in the acrosome reaction in human spermatozoa. Moreover, we demonstrated that the transfer of 1,4,5-trisphosphate into spermatozoa induced acrosome reactions, which provides more reliable evidence for this process. In addition, by treating the spermatozoa with inositol 1,4,5-trisphosphate/BioPORTER® in the presence or absence of calcium in the culture medium, we showed that the opening of inositol 1,4,5-trisphosphate-gated calcium channels led to extracellular calcium influx. This particular extracellular calcium influx may be the major process of the final step of the acrosome reaction signaling pathway.

Keywords: acrosome reaction; human spermatozoa; inositol 1,4,5-trisphosphate; zona pellucida; progesterone

Full Text | PDF |

 
Browse:  1696
 
Asian Journal of Andrology CN 31-1795/R ISSN 1008-682X  Copyright © 2023  Shanghai Materia Medica, Chinese Academy of Sciences.  All rights reserved.