Home  |   Archive  |   Online Submission  |   News & Events  |   Subscribe  |   APFA  |   Society  |   Contact Us  |   中文版

Ahead of print
Authors' Accepted
Current Issue
Special Issues
Browse by Category

Manuscript Submission

Online Submission
Online Review
Instruction for Authors
Instruction for Reviewers
English Corner new!

About AJA

About AJA
Editorial Board
Contact Us

Resources & Services

Email alert

Download area

Copyright licence
EndNote style file
Manuscript word template
Guidance for AJA figures
    preparation (in English)

Guidance for AJA figures
    preparation (in Chinese)

Proof-reading for the

AJA Club (in English)
AJA Club (in Chinese)


Volume 23, Issue 3 (May 2021) 23, 288–293; 10.4103/aja.aja_65_20

Whole exome sequencing and trio analysis to broaden the variant spectrum of genes in idiopathic hypogonadotropic hypogonadism

Jian Zhang1, Shu-Yan Tang1, Xiao-Bin Zhu2, Peng Li2, Jian-Qi Lu3, Jiang-Shan Cong1, Ling-Bo Wang1, Feng Zhang1, Zheng Li2

1 Obstetrics and Gynecology Hospital, NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), School of Life Sciences, Fudan University, Shanghai 200011, China
2 Department of Andrology, Center for Men's Health, Urologic Medical Center, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai 200080, China
3 Department of Research Institute, Reproduction Medical Center, The first Hospital of Lanzhou University, Lanzhou 730000, China

Correspondence: Dr. SY Tang (sy_tang05@outlook.com) or Dr. Z Li (lizhengboshi@163.com)

Date of Submission 13-Mar-2020 Date of Acceptance 02-Aug-2020 Date of Web Publication 17-Nov-2020


Dozens of genes are associated with idiopathic hypogonadotropic hypogonadism (IHH) and an oligogenic etiology has been suggested. However, the associated genes may account for only approximately 50% cases. In addition, a genomic systematic pedigree analysis is still lacking. Here, we conducted whole exome sequencing (WES) on 18 unrelated men affected by IHH and their corresponding parents. Notably, one reported and 10 novel variants in eight known IHH causative genes (AXL, CCDC141, CHD7, DMXL2, FGFR1, PNPLA6, POLR3A, and PROKR2), nine variants in nine recently reported candidate genes (DCAF17, DCC, EGF, IGSF10, NOTCH1, PDE3A, RELN, SLIT2, and TRAPPC9), and four variants in four novel candidate genes for IHH (CCDC88C, CDON, GADL1, and SPRED3) were identified in 77.8% (14/18) of IHH cases. Among them, eight (8/18, 44.4%) cases carried more than one variant in IHH-related genes, supporting the oligogenic model. Interestingly, we found that those variants tended to be maternally inherited (maternal with n = 17 vs paternal with n = 7; P = 0.028). Our further retrospective investigation of published reports replicated the maternal bias (maternal with n = 46 vs paternal with n = 28; P = 0.024). Our study extended a variant spectrum for IHH and provided the first evidence that women are probably more tolerant to variants of IHH-related genes than men.

Keywords: idiopathic hypogonadotropic hypogonadism; maternal inheritance; oligogenic inheritance; whole exome sequencing

Full Text | PDF |

Browse:  745
Copyright 1999-2017  Shanghai Materia Medica, Shanghai Jiao Tong University.  All rights reserved