Home  |   Archive  |   Online Submission  |   News & Events  |   Subscribe  |   APFA  |   Society  |   Contact Us  |   中文版

Ahead of print
Authors' Accepted
Current Issue
Special Issues
Browse by Category

Manuscript Submission

Online Submission
Online Review
Instruction for Authors
Instruction for Reviewers
English Corner new!

About AJA

About AJA
Editorial Board
Contact Us

Resources & Services

Email alert

Download area

Copyright licence
EndNote style file
Manuscript word template
Guidance for AJA figures
    preparation (in English)

Guidance for AJA figures
    preparation (in Chinese)

Proof-reading for the

AJA Club (in English)
AJA Club (in Chinese)


Volume 25, Issue 3 (May 2023) 25, 404–409; 10.4103/aja202271

Glutathione S-transferase genetic polymorphisms and fluoride-induced reproductive toxicity in men with idiopathic infertility

Jun He1, Yi Mu1, Miao Liu1, Bang-Wei Che1, Wen-Jun Zhang1, Ke-Hang Chen1, Kai-Fa Tang1,2

1 Department of Urology, The Affiliated Hospital of Guizhou Medical University, Guiyang 550004, China
    2 Institute of Medical Science, Guizhou Medical University, Guiyang 550004, China

Correspondence: Dr. KF Tang (tangkaifa@gmc.edu.cn)



Male infertility caused by idiopathic oligoasthenospermia (OAT) is known as idiopathic male infertility. Glutathione S-transferase (GST) and fluoride may play important roles in idiopathic male infertility, but their effects are still unknown. Our study examined the relationship between GST polymorphisms and fluoride-induced toxicity in idiopathic male infertility and determined the underlying mechanism. Sperm, blood, and urine samples were collected from 560 males. Fluoride levels were measured by a highly selective electrode method, and GST genotypes were identified using polymerase chain reaction (PCR) and PCR-restriction fragment length polymorphism (PCR-RFLP). Semen parameters, DNA fragmentation index (DFI), mitochondrial membrane potential (MMP), and oxidative stress (OS) biomarkers were statistically assessed at the P < 0.05 level. Compared with healthy fertile group, semen parameters, fluoride levels, OS biomarkers, sex hormone levels, and MMP and DFI levels were lower in the idiopathic male infertility group. For glutathione S-transferase M1 (GSTM1[-]) and glutathione S-transferase T1 (GSTT1[-]) or glutathione S-transferase P1 (GSTP1) mutant genotypes, levels of semen fluoride, OS, MMP, and DFI were considerably higher, and the mean levels of sperm parameters and testosterone were statistically significant in GSTM1(+), GSTT1(+), and GSTP1 wild-type genotypes. Both semen and blood fluoride levels were associated with oxidative stress in idiopathic male infertility patients. Elevated fluoride in semen with the genotypes listed above was linked to reproductive quality in idiopathic male infertility patients. In conclusion, GST polymorphisms and fluorine may have an indicative relationship between reproductive quality and sex hormone levels, and OS participates in the development of idiopathic male infertility.
    Keywords: fluorine; glutathione S-transferase; idiopathic male infertility; oxidative stress; polymorphism

Full Text | PDF |

Browse:  57
Asian Journal of Andrology CN 31-1795/R ISSN 1008-682X  Copyright © 2023  Shanghai Materia Medica, Chinese Academy of Sciences.  All rights reserved.