Home  |   Archive  |   Online Submission  |   News & Events  |   Subscribe  |   APFA  |   Society  |   Contact Us  |   中文版
Search   
 
Journal

Ahead of print
Authors' Accepted
    Manuscripts
new!
Current Issue
Archive
Acknowledgments
Special Issues
Browse by Category

Manuscript Submission

Online Submission
Online Review
Instruction for Authors
Instruction for Reviewers
English Corner new!

About AJA

About AJA
Editorial Board
Contact Us
News

Resources & Services

Advertisement
Subscription
Email alert
Proceedings
Reprints

Download area

Copyright licence
EndNote style file
Manuscript word template
Guidance for AJA figures
    preparation (in English)

Guidance for AJA figures
    preparation (in Chinese)

Proof-reading for the
    authors

AJA Club (in English)
AJA Club (in Chinese)

 
Abstract

Volume 19, Issue 5 (September 2017) 19, 526–532; DOI:10.4103/1008-682X.173935

Functional and structural changes in internal pudendal arteries underlie erectile dysfunction induced by androgen deprivation

Rhéure Alves-Lopes1, Karla B Neves2, Marcondes AB Silva1, Vania C Olivon1, Silvia G Ruginsk3, José Antunes-Rodrigues4, Leandra NZ Ramalho5, Rita C Tostes1, Fernando Silva Carneiro1

1 Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP, Brazil
2 Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP; Department of Physics and Chemistry, Faculty of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, SP, Brazil
3 Department of Physiological Sciences, Biomedical Sciences Institute, Federal University of Alfenas, Alfenas, MG; Department of Physiology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP, Brazil
4 Department of Physiology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP, Brazil
5 Department of Pathology and Legal Medicine, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP, Brazil

Correspondence: Dr. FS Carneiro (fsilvac@usp.br)

Date of Submission 23-Jun-2015 Date of Decision 27-Aug-2015 Date of Acceptance 23-Nov-2015 Date of Web Publication 05-Jul-2016

Abstract

Androgen deficiency is strongly associated with erectile dysfunction (ED). Inadequate penile arterial blood flow is one of the major causes of ED. The blood flow to the corpus cavernosum is mainly derived from the internal pudendal arteries (IPAs); however, no study has evaluated the effects of androgen deprivation on IPA's function. We hypothesized that castration impairs IPAs reactivity and structure, contributing to ED. In our study, Wistar male rats, 8-week-old, were castrated and studied 30 days after orchiectomy. Functional and structural properties of rat IPAs were determined using wire and pressure myograph systems, respectively. Protein expression was determined by Western blot and immunohistochemistry. Plasma testosterone levels were determined using the IMMULITE 1000 Immunoassay System. Castrated rats exhibited impaired erectile function, represented by decreased intracavernosal pressure/mean arterial pressure ratio. IPAs from castrated rats exhibited decreased phenylephrine- and electrical field stimulation (EFS)-induced contraction and decreased acetylcholine- and EFS-induced vasodilatation. IPAs from castrated rats exhibited decreased internal diameter, external diameter, thickness of the arterial wall, and cross-sectional area. Castration decreased nNOS and α-actin expression and increased collagen expression, p38 (Thr180/Tyr182) phosphorylation, as well as caspase 3 cleavage. In conclusion, androgen deficiency is associated with impairment of IPA reactivity and structure and increased apoptosis signaling markers. Our findings suggest that androgen deficiency-induced vascular dysfunction is an event involving hypotrophic vascular remodeling of IPAs.

Keywords: androgen; castration; internal pudendal artery

Full Text | PDF |

 
Browse:  1351
 
Asian Journal of Andrology CN 31-1795/R ISSN 1008-682X  Copyright © 2023  Shanghai Materia Medica, Chinese Academy of Sciences.  All rights reserved.