Home  |   Archive  |   Online Submission  |   News & Events  |   Subscribe  |   APFA  |   Society  |   Contact Us  |   中文版
Search   
 
Journal

Ahead of print
Authors' Accepted
    Manuscripts
new!
Current Issue
Archive
Acknowledgments
Special Issues
Browse by Category

Manuscript Submission

Online Submission
Online Review
Instruction for Authors
Instruction for Reviewers
English Corner new!

About AJA

About AJA
Editorial Board
Contact Us
News

Resources & Services

Advertisement
Subscription
Email alert
Proceedings
Reprints

Download area

Copyright licence
EndNote style file
Manuscript word template
Guidance for AJA figures
    preparation (in English)

Guidance for AJA figures
    preparation (in Chinese)

Proof-reading for the
    authors

AJA Club (in English)
AJA Club (in Chinese)

 
Abstract

Volume 5, Issue 4 (December 2003) 5, 277–286;

Rodent epididymal cDNAs identified by sequence homology to human and canine counterparts

K. Käppler-Hanno, C. Kirchhoff

IHF, Institute for Hormone and Fertility Research, University Hospital Hamburg-Eppendorf D-20251 Hamburg, Germany

Advance online publication 1 December 2003

Abstract

Aim: Identification of the rodent counterparts of human and canine epididymal cDNAs HE3, HE4 and Ce8/Ly6G5C by sequence homology and analysis of their expression patterns and regulation level in the rat. Methods: "Electronic screening" of Expressed Sequence Tag (EST) and genomic databases, followed by RT-PCR and Northern blot analysis. Results: Rodent ESTs and genomic sequences homologous to HE3, HE4 and Ce8/Ly6G5C were identified in the public databases and the "full-length" rat cDNAs cloned. To emphasise their homology to the human and canine genes, they were named Me3/Re3, Me4/Re4 and Re8 for mouse and rat counterparts, respectively. mRNA expression patterns were analysed in rats, including rat HE1 and HE5/CD52 counterparts as controls. Re3 and Re8 mRNAs were only found in the rat epididymis, while Re4 showed a broader tissue distribution. Within the epididymis, Re3 and Re4 mRNAs were detected in all regions; Re8, on the other hand, was restricted to the caput. During postnatal development, Re3 and control mRNAs were found from the earliest stages investigated, while Re8 mRNA was observed only from day 24 postnatum, corresponding to the onset of spermatogenesis in the prepubertal testis. Castration and testosterone supplementation of adult male rats suggested that none of the cloned mRNAs was directly androgen-regulated. Efferent duct ligation, however, showed that Re8 mRNA levels depended on testicular factors other than androgens. Conclusion: The novel rodent cDNAs can now be used to monitor epididymal gene expression more closely and to set up various regulatory and functional studies.
    
    

Full Text |

 
Browse:  2424
 
Asian Journal of Andrology CN 31-1795/R ISSN 1008-682X  Copyright © 2023  Shanghai Materia Medica, Chinese Academy of Sciences.  All rights reserved.